中国科学院计算技术研究所张蕊获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网获悉中国科学院计算技术研究所申请的专利基于迁移学习的人物检测方法和系统获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN114419667B 。
龙图腾网通过国家知识产权局官网在2025-09-26发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202111616327.8,技术领域涉及:G06V40/10;该发明授权基于迁移学习的人物检测方法和系统是由张蕊;杜治兴;张曦珊设计研发完成,并于2021-09-18向国家知识产权局提交的专利申请。
本基于迁移学习的人物检测方法和系统在说明书摘要公布了:本发明提出一种基于迁移学习的人物检测方法和系统,构建用于图像目标检测的教师网络和其对应的学生网络,获取已标注人物类别标签的图片数据集作为训练数据集;分别根据老师网络和学生网络每层目标检测FPN中特征包含的目标对象信息量,得到老师网络每层目标检测FPN的老师特征丰富度得分和学生网络每层目标检测FPN的学生特征丰富度得分;基于该老师特征丰富度得分和该学生特征丰富度得分,得到分类头约束损失;对教师网络的损失、学生网络的损失和该分类头约束损失进行求和,得到蒸馏损失;该蒸馏损失收敛后使用该学生网络对图片中的人物进行检测。
本发明授权基于迁移学习的人物检测方法和系统在权利要求书中公布了:1.一种基于迁移学习的人物检测方法,其特征在于,包括: 步骤1、构建用于图像目标检测的教师网络和其对应的学生网络,获取已标注人物类别标签的图片数据集作为训练数据集; 步骤2、分别根据老师网络和学生网络每层目标检测FPN中特征包含的目标对象信息量,得到老师网络每层目标检测FPN的老师特征丰富度得分和学生网络每层目标检测FPN的学生特征丰富度得分; 步骤3、基于该老师特征丰富度得分和该学生特征丰富度得分,得到分类头约束损失; 步骤4、对教师网络的损失、学生网络的损失和该分类头约束损失进行求和,得到蒸馏损失; 步骤5、循环该步骤2到该步骤4,直到该蒸馏损失收敛或达到预设重复迭代次数,终止训练,将当前学生网络作为人物检测模型,并使用该人物检测模型对待识别图片中的人物进行检测,得到待识别图片中人物的人物类别作为识别结果; 该分类头约束损失: 式中M代表FPN的层数,W,H代表特征图的宽度和高度, 分别代表着老师网络和学生网络第l层对应的老师特征丰富度得分和学生特征丰富度得分,φ为二进制交叉熵函数,C代表图片的通道维度。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人中国科学院计算技术研究所,其通讯地址为:100080 北京市海淀区中关村科学院南路6号;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。
请提出您的宝贵建议,有机会获取IP积分或其他奖励