恭喜浙江农林大学杨垠晖获国家专利权
买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
龙图腾网恭喜浙江农林大学申请的专利基于自然图像的树木多级枝干结构自动提取方法获国家发明授权专利权,本发明授权专利权由国家知识产权局授予,授权公告号为:CN116071653B 。
龙图腾网通过国家知识产权局官网在2025-04-22发布的发明授权授权公告中获悉:该发明授权的专利申请号/专利号为:202310148560.0,技术领域涉及:G06V20/10;该发明授权基于自然图像的树木多级枝干结构自动提取方法是由杨垠晖;赖煌;夏凯设计研发完成,并于2023-02-16向国家知识产权局提交的专利申请。
本基于自然图像的树木多级枝干结构自动提取方法在说明书摘要公布了:本发明公开了基于自然图像的树木多级枝干结构自动提取方法,属于计算机图形技术领域;本发明首先对采集的树木图像进行树木图像标注处理,生成枝干标注数据;然后,对这些枝干标注数据进行处理,生成符合神经网络模型要求的长度一致的向量数据;接着,利用树木图像数据以及处理后的枝干标注数据进行神经网络模型训练,输出训练好的神经网络模型并保存;进一步地,对加载神经网络模型文件和树木图像文件进行处理,计算并输出结果;最后读取上述输出结果,进行主干和一级侧枝枝干结构的生成,并将结果存入文件。相较于现有技术,本发明所提出的方法自动化程度高,用户操作简便,能够处理复杂背景图像能力更强,且生成的枝干结构质量更高。
本发明授权基于自然图像的树木多级枝干结构自动提取方法在权利要求书中公布了:1.基于自然图像的树木多级枝干结构自动提取方法,其特征在于,采用深度神经网络模型,实现从图像中提取树木多级枝干结构,具体包括以下内容:S1、构建数据集:收集树木图像和枝干标注数据,构建用于训练深度神经网络的数据集,进一步包括如下内容:S1.1、树木图像采集:通过网络爬取和手机拍摄获取树木图像,所述树木图像均为RGB图像,储存为JPEG格式;S1.2、树木图像标注:利用标注软件对S1.1中所得的树木图像中的枝干结构进行标注;具体包括以下内容:S1.2.1、选取树木图像,利用标注软件可视化所选取的图片;S1.2.2、用户选择所要标注枝干的等级:主干对应等级0,与主干直接相连的侧枝对应等级1,与上述等级1侧枝直接相连的次级侧枝对应等级2,依次类推;S1.2.3、用户在树木图像上直接点击以标注构成枝干的结点,标注软件会自动获取并记录其二维坐标、所对应的枝干等级;当用户完成某一枝干所有结点的标注后,标注软件自动连接这些结点以构造枝干的点-线图并保存;S1.2.4、用户重复上述S1.2.2~S1.2.3步骤直到完成m个枝干等级的标注;所述m表示用户预先指定的等级数量;S1.3、枝干标注数据处理:对S1.2中所得的枝干标注数据进行处理,构建维度统一的数据;S2、构建深度神经网络模型:深度神经网络模型采用骨架网络和分支网络的结构,其中,所述骨架网络采用BotNet网格结构,由卷积残差模块和多头自注意力模块构成;所述分支网络由全连接模块构成;构建深度神经网络模型的损失函数,并对模型进行训练;S3、构建基于深度神经网络模型输出结果的树木多级枝干结构:深度神经网络模型的输入为一幅树木图像,输出为一系列枝干结点坐标值构成的向量,基于输出结果,构建树木枝干结构。
如需购买、转让、实施、许可或投资类似专利技术,可联系本专利的申请人或专利权人浙江农林大学,其通讯地址为:311300 浙江省杭州市临安区武肃街666号浙江农林大学数学与计算机科学学院学11-509室;或者联系龙图腾网官方客服,联系龙图腾网可拨打电话0551-65771310或微信搜索“龙图腾网”。
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。