首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种挥发性有机物的UV-FAIMS定量检测方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:中国科学院合肥物质科学研究院

摘要:一种挥发性有机物的UV‑FAIMS紫外灯电离源‑高场不对称波形离子迁移谱定量检测方法,属于分析检测技术领域。该方法通过改变流速,检测电流信号,获取固定浓度下标准品流速‑信号强度关系曲线;根据该关系曲线获取饱和信号强度所对应的饱和流速值,截取该曲线小流速区间,根据离子复合方程,求解离子复合损耗系数;固定载气流速在大于饱和流速的条件下,进行FAIMS分析,获取分离电压‑峰高关系曲线,根据定量模型求解多组样品浓度均值,实现待测物的定量分析。该定量检测方法为高场不对称波形离子迁移谱中离子运动理论提供了重要参考;为推动离子迁移谱技术从安全预警等定性分析领域走向更加广阔的定量分析领域提供了重要的依据。

主权项:1.一种挥发性有机物的UV-FAIMS定量检测方法,其特征在于包括以下步骤:a、选择待测挥发性有机物标准品样品,分别配制至少五个梯度浓度的系列标准溶液,依次进行紫外灯电离源-高场不对称波形离子迁移谱检测,获取样品浓度和离子总量,确定电离效率;b、固定样品浓度,通过高精度流量计等比例地调节载气流速和待测气体流速,检测经过传输区后的信号强度,获取固定浓度下标准品流速和信号强度,根据流速-信号强度关系得到该待测物的饱和流速值Qs;c、根据上述步骤b得到的流速-信号强度关系和饱和流速值,截取0-100Lh小流速区间内固定浓度下标准品流速-信号强度关系曲线进行直线拟合获取拟合直线斜率,根据离子复合损耗方程得到离子复合损耗系数;d、在大于步骤b得到的饱和流速值Qs下固定载气流速,等梯度改变分离电压,进行检测;检测经过传输区后的信号强度,获取标准待测物分离电压与峰高强度关系曲线;固定分离电压,等梯度改变流速,获取载气流速与峰高强度关系曲线;根据分离电压与峰高强度关系和分离电压与峰高强度关系曲线;固定分离电压,等梯度改变流速,获取载气流速与峰高强度关系计算得到离子中和及扩散损耗;e、以待测物为定量分析样品,重复步骤b,获取该样品的饱和流速值Qs;固定载气流速在大于该饱和流速的条件下,对待测样品进行高场不对称波形离子迁移谱分析;以20V为间隔,依次获取10组分离电压-峰高关系曲线,基于上述步骤得到的电离效率、离子复合损耗系数以及离子中和及扩散损耗,得到紫外灯电离源-高场不对称波形离子迁移谱宽范围定量方程,计算出不同DV下待测样品浓度值,对求出的10组浓度数据求均值,即为最终待测样品浓度;步骤c中所述的离子复合损耗方程为: 其中nout为离子传输过程中经离子复合作用后剩下的目标离子浓度,ρ为离子复合损耗系数,tres为离子传输时间,Q为载气流速,l为离子传输距离,s为气体通道截面积;步骤e中所述的紫外灯电离源-高场不对称波形离子迁移谱宽范围定量方程具体为: 其中H为目标离子峰峰高;步骤a中所述的电离效率的方程为:nin=μ0C;其中,μ0为物质电离效率,C为输入样品浓度,nin为经紫外灯电离源电离得到的目标离子浓度;步骤d中所述的离子中和及扩散损耗方程为: 其中L为离子传输系数,等于分离区出口离子浓度与入口离子浓度之比,D为扩散系数,g为有效间距,等于分析通道高度与损耗高度之差;当即时,在大流量条件下,检测信号强度与流速无关,正比于样品浓度,通过改变样品浓度,检测离子信号强度I,获取C-I曲线,求解斜率即可求出该分析物的电离效率;当即时,在小流速条件下,信号强度正比于气体流速;通过改变气体流速,检测信号强度I,从而获取Q-I曲线,求解斜率即可求出离子复合损耗系数。

全文数据:一种挥发性有机物的UV-FAIMS定量检测方法技术领域本发明涉及一种挥发性有机物的定量检测方法,更具体的涉及一种挥发性有机物的UV-FAIMS紫外灯电离源-高场不对称波形离子迁移谱定量检测方法,属于分析检测技术领域。背景技术离子迁移谱是一种基于离子迁移率物理特性的物质成分探测技术,具有灵敏度高、速度快、常压工作等一系列优势,是现阶段爆炸物、毒品、化学毒剂等危害毒险品的探测主流技术。全世界范围内运行于机场、海关、边境等敏感地带以及军队的台式及便携式离子迁移谱仪器已达数十万台,为公共安全预警提供了可靠的探测技术保障。离子迁移谱种类繁多,包括飞行时间离子迁移谱、吸气式离子迁移谱、行波离子迁移谱,以及高场不对称波形离子迁移谱等。高场不对称波形离子迁移谱,也被称为差分离子迁移谱,增量离子迁移谱等,是一种利用离子迁移率在高电场下非线性变化特性实现物质离子分离识别的微量痕量物质现场检测技术。高场不对称波形离子迁移谱是一种适合MEMS集成和微型化的离子迁移谱,在高分辨质谱领域已得到广泛应用,并在现场检测领域展现了广阔应用前景。因该技术在爆炸物、化学毒剂等物质探测上的优势而在冷战时期大量配备于美苏军方。911恐怖袭击以后,该技术广泛应用于公共安全领域,成为危害毒险品探测的主要手段。在以GuevremontR、ShvartsburgAA为代表的等诸多研究团队,以及复杂体系对高分辨分析技术强大需求的推动下,高场不对称波形离子迁移谱被广泛应用于代谢组学、微生物组学、蛋白组学、药物分析、红酒酿造、食品及饮用水安全、尿液分析、燃烧残片分析等几乎所有质谱分析检测领域,并成数量级提升了实验室分析检测精度。该技术在实验室分析上的优势同样引起了产业界的关注,自2010年以来,在Thermofisher、Varian、Agilent、Waters等分析仪器公司的推动下,高场不对称波形离子迁移谱已应用于部分顶尖质谱产品。然而,在同样亟需现场检测手段的环境监测、食品安全检测等领域,离子迁移谱却鲜见其踪。其关键障碍在于:离子传送过程研究的缺失和数据获取的局域性,导致了高场不对称波形离子迁移谱缺乏可靠的定量检测方法,其物质成分检测方式在很大程度上是“定性发现”而不是“定量分析”。这极大限制了离子迁移谱这一现场检测技术的应用范围。本专利以紫外灯电离源高场不对称波形离子迁移谱为对象,提出了电离效率及复合系数的求解方法以及基于宽范围定量模型的高场不对称波形离子迁移谱挥发性有机物定量检测方法。发明内容针对离子传送过程研究的缺失和数据获取的局域性导致的高场不对称波形离子迁移谱定量缺乏可靠的离子传输损耗模型问题,本发明了构建紫外灯电离源-高场不对称波形离子迁移谱宽量程定量模型;同时针对电离效率、损耗高度,尤其是离子复合损耗系数难以求解的问题,提出全新的求解方法。为实现以上目的,本发明所采用的技术方案是:一种挥发性有机物的UV-FAIMS紫外灯电离源-高场不对称波形离子迁移谱定量检测方法,包括如下步骤:a、选择待测挥发性有机物标准品样品,分别配制至少五个梯度浓度的系列标准溶液,依次进行紫外灯电离源-高场不对称波形离子迁移谱检测,获取样品浓度和离子总量,确定电离效率。紫外灯电离源在宽浓度范围内具有很好的线性关系,即在大浓度范围内离子浓度正比于样品浓度。所述的电离效率的方程具体为:nin=μ0C,其中,μ0为物质电离效率,C为输入样品浓度,nin为经紫外灯电离源电离得到的目标离子浓度单位体积内目标离子的个数。b、固定样品浓度,通过高精度流量计等比例地调节载气流速和待测气体流速,检测经过传输区后的信号强度,获取固定浓度下标准品流速和信号强度,根据流速-信号强度关系得到该待测物的饱和流速值Qs。c、根据上述步骤b得到的流速-信号强度关系和饱和流速值,截取小流速区间0-100Lh内固定浓度下标准品流速-信号强度关系曲线进行直线拟合获取拟合直线斜率,根据离子复合损耗方程得到离子复合损耗系数。离子复合效应依赖于样品浓度、气流通道以及气体流速。对于同一样品,浓度越大,离子复合效应越显著;对于固定浓度的同一样品,载气流速越小,离子复合损耗越显著。所述的离子复合损耗方程具体为:其中nout为离子传输过程中经离子复合作用后剩下的目标离子浓度,ρ为离子复合损耗系数,tres为离子传输时间,Q为载气流速,l为离子传输距离,s为气体通道截面积。优选的,当即时,在大流量条件下,检测信号强度与流速无关,正比于样品浓度,通过改变样品浓度,检测离子信号强度I,获取C-I曲线,求解斜率即可求出该分析物的紫外灯电离效率:优选的,当即时,在小流速条件下,信号强度正比于气体流速。通过改变气体流速,检测信号强度I,从而获取Q-I曲线,求解斜率即可求出离子复合损耗系数:d、在大于步骤b得到的饱和流速值Qs下固定载气流速,等梯度改变分离电压,进行检测。检测经过传输区后的信号强度,获取标准待测物分离电压与峰高强度关系曲线。固定分离电压,等梯度改变流速,获取载气流速与峰高强度关系曲线。根据分离电压与峰高强度关系和分离电压与峰高强度关系曲线。固定分离电压,等梯度改变流速,获取载气流速与峰高强度关系计算得到离子中和及扩散损耗。离子在分离电压及补偿电压的作用下在分离区内实现分离,同时由于纵向震荡以及不规则扩散的存在,离子与碰撞极板而中和。离子扩散效应及离子中和效应由扩散系数和损耗高度。所述的离子中和及扩散损耗方程具体为:其中L为离子传输系数,等于分离区出口离子浓度与入口离子浓度之比,D为扩散系数,g为有效间距,等于分析通道高度与损耗高度之差。e、以待测物为定量分析样品,重复步骤b,获取该样品的饱和流速值Qs。固定载气流速在大于该饱和流速的条件下,对待测样品进行高场不对称波形离子迁移谱分析。以20V为间隔,依次获取10组分离电压-峰高关系曲线,基于上述步骤得到的紫外灯电离源电离效率、离子复合损耗以及离子中和及扩散损耗,得到紫外灯电离源-高场不对称波形离子迁移谱宽范围定量方程,计算出不同DV下待测样品浓度值,对求出的10组浓度数据求均值,即为最终待测样品浓度。所述的紫外灯电离源-高场不对称波形离子迁移谱宽范围定量方程具体为:其中H为目标离子峰峰高。优选的,当时,优选的,当时,本发明有益效果1该紫外灯电离源-高场不对称波形离子迁移谱定量检测方法为电离效率、离子复合损耗系数的求解提供了新方法;尤其是离子复合损耗系数的求解解决了离子复合损耗系数难以获得的难题,对研究电离层的形成,太阳外层大气的性质以及高温等离子体的行为特点均具有重要意义。2该紫外灯电离源-高场不对称波形离子迁移谱定量检测方法有望推动高场不对称波形离子迁移谱技术从安全预警走向更加广阔的定量分析应用领域;同时,该定量方法为基于紫外灯电离源的其他分析仪器紫外灯电离源离子迁移谱,大气压光离子化质谱的定量分析提供了方法参考。附图说明图1为离子复合损耗系数及电离效率求解实验原理图。图2为实施例1的1,3-丁二烯在离子复合作用下流速-信号强度关系图。图3为实施例1的1,3-丁二烯在饱和流速下样品浓度-信号强度关系图。图4为实施例1的1,3-丁二烯在固定浓度下低流速范围内流速-信号强度关系图。图5为紫外灯电离源高场不对称波形定量分析实验原理图。图6为实施例2的丙酮定量检测获取的分离电压-峰高关系曲线图。图7为实施例2的丙酮在离子复合作用下流速-信号强度关系图。图8为实施例2的丙酮在饱和流速下样品浓度-信号强度关系图。图9为实施例2的丙酮在固定浓度下低流速范围内流速-信号强度关系图。图10为实施例2的丙酮定量检测获取的分离电压-峰高关系曲线图。图11为实施例3的氨气在离子复合作用下流速-信号强度关系图。图12为实施例3的氨气在饱和流速下样品浓度-信号强度关系图。图13为实施例3的氨气在固定浓度下低流速范围内流速-信号强度关系图。附图14为实施例3的氨气定量检测获取的分离电压-峰高关系曲线图。具体实施方式为了更好地理解本发明,下面结合附图说明进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例,实施例不应视作对本发明保护范围的限定。实施例中使用的仪器:实施例中所述高场不对称波形离子迁移谱仪集成离子源、分离电压电源、补偿电压电源、离子迁移管分析器、弱电流探测器、测控系统等关键模块。离子源采用10.6eV的真空紫外灯;分离电压为不对称方波,频率为1MHz,占空比为30%,幅值范围为0-2000V可调;CV为范围在-30~+30V的缓变直流信号;离子迁移管分离电极尺寸为20×10×0.5mm。载气为99.999%高纯氮气。实施例1:挥发性有机物1,3-丁二烯的UV-FAIMS紫外灯电离源-高场不对称波形离子迁移谱定量检测方法:1、电离效率的求解:控制载气流速在大于饱和流速的条件下,通过调节流量计12,引入载气10,等间距地增加载气流速,如步骤1中接线方法,获取浓度-电流关系曲线,如附图3所示。对该直线进行线性拟合获取直线斜率,根据紫外灯电离源电离效率求解公式,求解电离效率为4.56×10-5。2、在0-1000Lh范围内递增改变载气流速,检测经过电离区和传输区后的信号强度,获取流速-信号前度关系曲线。如附图1所示,高精度流量计11用以准确控制样品气9流速大小,高精度流量计12用以准确控制载气10流速大小。流量计11和流量计12实现流速控制的同时,通过调节两者流速大小实现样品浓度的调节。样品分子1在载气2的带动下进入高场不对称波形离子迁移谱的电离区,在紫外灯电离源3的作用下样品分子1被电离为离子4。此时,分离区上极板电极5施加直流偏置电压6,分离区下极板电极7接弱信号探测器8,控制载气流量为0,递增地调节样品气9流速,直至信号明显饱和,获取流速-信号强度曲线,提取流速饱和点,如附图2所示。3、离子复合损耗系数求解,如附图1所示,高精度流量计11用以准确控制样品气9流速大小,高精度流量计12用以准确控制载气10流速大小。流量计11和流量计12实现流速控制的同时,通过调节两者流速大小同时实现样品浓度的调节。此时,通过等比例地调节流量计11和流量计12实现固定样品浓度的同时,在小流量范围内0-100Lh递增地改变载气流速。分离区上极板电极5施加直流偏置电压6,分离区下极板电极7接弱信号探测器8,获取流速-信号强度曲线,如附图4所示。线性拟合获取直线斜率,根据权离子复合损耗系数求解公式,求解复合系数。本实施例中样品为1,3-丁二烯,丙酮和氨气,求解的离子复合损耗系数分别为2.56×10-7。4、离子扩散及离子中和损耗计算,FAIMS内部离子浓度沿着x轴方向呈现正梯度分布,y轴方向上离子浓度由中间区域沿上下极板呈现递减分布。离子扩散可以由离子经迁移时间t后的扩散半径来衡量。离子扩散半径流速为100mls,得该数值远远小于迁移管纵向高度0.5mm。因此离子扩散作用对离子的迁移特性可以忽略不计。FAIMS内部离子中和主要指离子在震荡过程中打击到分析器上下极板而被中和的现象。离子中和的强度主要由迁移区内分离电压强度来决定的,在FAISM中常用损耗高度Δ来表征。损耗高度定义为离子在单周期内在纵向上震荡位移的峰峰值。即:其中K为离子迁移率,d为极板间距,fV为分离电压波形,T为分离电压最小周期。有效分离高度g定义为分析器高度d与损耗高度Δ之差。对于理想方波:其中VH和KH分别分离电压正周期幅值及相应的离子迁移率,f和λ分别为分离电压频率和占空比。以峰峰值为2000,计算得损耗高度Δ=38um,有效高度g=0.46mm。5、待测样品的定量分析,如附图5所示,样品分子1在载气2作用下,进入分析器电离区被紫外灯3电离为离子4,离子4在载气2的作用下,经过传输区进入分离区,离子4在补偿电压5和分离电压6的作用下实现分离,最后目标离子在偏置电压7的作用下,打击到检测板8经弱信号放大器9放大,从而获取高场不对称波形离子迁移谱谱图11,该普通包含离子峰峰高、峰位置等重要信息。此时递增地改变分离电压幅值,直至目标离子峰完全分离。进一步递增地改变分离电压幅值,获取5-10组谱图并获取分离电压-峰高曲线,如图6所示。将步骤2、步骤3中求解的电离效率及离子复合损耗系数带入饱和流速下的定量公式:求解出不同分离电压下的浓度值,取其平均即为待测样品浓度。本实施例中待测样品为20ppb的1,3-丁二烯,定量检测结果为22ppb。实施例2:挥发性有机物丙酮的UV-FAIMS紫外灯电离源-高场不对称波形离子迁移谱定量检测方法:1、电离效率的求解:控制载气流速在大于饱和流速的条件下,通过调节流量计12,引入载气10,等间距地增加载气流速,如步骤1中接线方法,获取浓度-电流关系曲线,如附图7所示。对该直线进行线性拟合获取直线斜率,根据紫外灯电离源电离效率求解公式,求解电离效率为5.41×10-5。2、在0-1000Lh范围内递增改变载气流速,检测经过电离区和传输区后的信号强度,获取流速-信号前度关系曲线。如附图1所示,高精度流量计11用以准确控制样品气9流速大小,高精度流量计12用以准确控制载气10流速大小。流量计11和流量计12实现流速控制的同时,通过调节两者流速大小实现样品浓度的调节。样品分子1在载气2的带动下进入高场不对称波形离子迁移谱的电离区,在紫外灯电离源3的作用下样品分子1被电离为离子4。此时,分离区上极板电极5施加直流偏置电压6,分离区下极板电极7接弱信号探测器8,控制载气流量为0,递增地调节样品气9流速,直至信号明显饱和,获取流速-信号强度曲线,提取流速饱和点,如附图8所示。3、离子复合损耗系数求解,如附图1所示,高精度流量计11用以准确控制样品气9流速大小,高精度流量计12用以准确控制载气10流速大小。流量计11和流量计12实现流速控制的同时,通过调节两者流速大小同时实现样品浓度的调节。此时,通过等比例地调节流量计11和流量计12实现固定样品浓度的同时,在小流量范围内0-100Lh递增地改变载气流速。分离区上极板电极5施加直流偏置电压6,分离区下极板电极7接弱信号探测器8,获取流速-信号强度曲线,如附图9所示。线性拟合获取直线斜率,根据离子复合损耗系数求解公式,求解复合系数为3.74×10-7。4、离子扩散及离子中和损耗计算,FAIMS内部离子浓度沿着x轴方向呈现正梯度分布,y轴方向上离子浓度由中间区域沿上下极板呈现递减分布。离子扩散可以由离子经迁移时间t后的扩散半径来衡量。离子扩散半径流速为100mls的1,3-丁二烯样品在迁移通道尺寸为20×0.5×10mm的FAIMS分析器中的迁移中,扩散半径该数值远远小于迁移管纵向高度0.5mm。因此离子扩散作用对离子的迁移特性可以忽略不计。FAIMS内部离子中和主要指离子在震荡过程中打击到分析器上下极板而被中和的现象。离子中和的强度主要由迁移区内分离电压强度来决定的,在FAISM中常用损耗高度Δ来表征。损耗高度定义为离子在单周期内在纵向上震荡位移的峰峰值。即:其中K为离子迁移率,d为极板间距,fV为分离电压波形,T为分离电压最小周期。有效分离高度g定义为分析器高度d与损耗高度Δ之差。对于理想方波:其中VH和KH分别分离电压正周期幅值及相应的离子迁移率,f和λ分别为分离电压频率和占空比。以峰峰值为2000,计算得损耗高度Δ=20um,有效高度g=0.48mm。5、待测样品的定量分析,如附图5所示,样品分子1在载气2作用下,进入分析器电离区被紫外灯3电离为离子4,离子4在载气2的作用下,经过传输区进入分离区,离子4在补偿电压5和分离电压6的作用下实现分离,最后目标离子在偏置电压7的作用下,打击到检测板8经弱信号放大器9放大,从而获取高场不对称波形离子迁移谱谱图。此时递增地改变分离电压幅值,直至目标离子峰完全分离。进一步递增地改变分离电压幅值,获取5-10组谱图并获取分离电压-峰高曲线,如附图10所示。将步骤2、步骤3中求解的电离效率及离子复合损耗系数带入饱和流速下的定量公式:求解出不同分离电压下的浓度值,取其平均即为待测样品浓度。本实施例中待测样品为15ppb,定量检测结果为15.6ppb。实施例3:挥发性有机物氨气的UV-FAIMS紫外灯电离源-高场不对称波形离子迁移谱定量检测方法:1、电离效率的求解:控制载气流速在大于饱和流速的条件下,通过调节流量计12,引入载气10,等间距地增加载气流速,如步骤1中接线方法,获取浓度-电流关系曲线,如附图11所示。对该直线进行线性拟合获取直线斜率,根据紫外灯电离源电离效率求解公式,求解电离效率为4.47×10-6。2、在0-1000Lh范围内递增改变载气流速,检测经过电离区和传输区后的信号强度,获取流速-信号前度关系曲线。如附图1所示,高精度流量计11用以准确控制样品气9流速大小,高精度流量计12用以准确控制载气10流速大小。流量计11和流量计12实现流速控制的同时,通过调节两者流速大小实现样品浓度的调节。样品分子1在载气2的带动下进入高场不对称波形离子迁移谱的电离区,在紫外灯电离源3的作用下样品分子1被电离为离子4。此时,分离区上极板电极5施加直流偏置电压6,分离区下极板电极7接弱信号探测器8,控制载气流量为0,递增地调节样品气9流速,直至信号明显饱和,获取流速-信号强度曲线,提取流速饱和点,如附图12所示。3、离子复合损耗系数求解,如附图1所示,高精度流量计11用以准确控制样品气9流速大小,高精度流量计12用以准确控制载气10流速大小。流量计11和流量计12实现流速控制的同时,通过调节两者流速大小同时实现样品浓度的调节。此时,通过等比例地调节流量计11和流量计12实现固定样品浓度的同时,在小流量范围内0-100Lh递增地改变载气流速。分离区上极板电极5施加直流偏置电压6,分离区下极板电极7接弱信号探测器8,获取流速-信号强度曲线,如附图13所示。线性拟合获取直线斜率,根据权离子复合损耗系数求解公式,求解复合系数为1.89×10-8cm3s。4、离子扩散及离子中和损耗计算,FAIMS内部离子浓度沿着x轴方向呈现正梯度分布,y轴方向上离子浓度由中间区域沿上下极板呈现递减分布。离子扩散可以由离子经迁移时间t后的扩散半径来衡量。离子扩散半径以流速为100mls的1,3-丁二烯样品在迁移通道尺寸为20×0.5×10mm的FAIMS分析器中的迁移为例,该数值远远小于迁移管纵向高度0.5mm。因此离子扩散作用对离子的迁移特性可以忽略不计。FAIMS内部离子中和主要指离子在震荡过程中打击到分析器上下极板而被中和的现象。离子中和的强度主要由迁移区内分离电压强度来决定的,在FAISM中常用损耗高度Δ来表征。损耗高度定义为离子在单周期内在纵向上震荡位移的峰峰值。即:其中K为离子迁移率,d为极板间距,fV为分离电压波形,T为分离电压最小周期。有效分离高度g定义为分析器高度d与损耗高度Δ之差。对于理想方波:其中VH和KH分别分离电压正周期幅值及相应的离子迁移率,f和λ分别为分离电压频率和占空比。以峰峰值为2000,计算得损耗高度Δ=42um,有效高度g=0.46mm。5、待测样品的定量分析,如附图5所示,样品分子1在载气2作用下,进入分析器电离区被紫外灯3电离为离子4,离子4在载气2的作用下,经过传输区进入分离区,离子4在补偿电压5和分离电压6的作用下实现分离,最后目标离子在偏置电压7的作用下,打击到检测板8经弱信号放大器9放大,从而获取高场不对称波形离子迁移谱谱图。此时递增地改变分离电压幅值,直至目标离子峰完全分离。进一步递增地改变分离电压幅值,获取5-10组谱图并获取分离电压-峰高曲线,如附图14所示。将步骤2、步骤3中求解的电离效率及离子复合损耗系数带入饱和流速下的定量公式:求解出不同分离电压下的浓度值,取其平均即为待测样品浓度。本实施例中待测样品为0.25ppm的氨气,定量检测结果为0.26ppm。

权利要求:1.一种挥发性有机物的UV-FAIMS定量检测方法,其特征在于包括以下步骤:a、选择待测挥发性有机物标准品样品,分别配制至少五个梯度浓度的系列标准溶液,依次进行紫外灯电离源-高场不对称波形离子迁移谱检测,获取样品浓度和离子总量,确定电离效率;b、固定样品浓度,通过高精度流量计等比例地调节载气流速和待测气体流速,检测经过传输区后的信号强度,获取固定浓度下标准品流速和信号强度,根据流速-信号强度关系得到该待测物的饱和流速值Qs;c、根据上述步骤b得到的流速-信号强度关系和饱和流速值,截取小流速区间0-100Lh内固定浓度下标准品流速-信号强度关系曲线进行直线拟合获取拟合直线斜率,根据离子复合损耗方程得到离子复合损耗系数;d、在大于步骤b得到的饱和流速值Qs下固定载气流速,等梯度改变分离电压,进行检测;检测经过传输区后的信号强度,获取标准待测物分离电压与峰高强度关系曲线;固定分离电压,等梯度改变流速,获取载气流速与峰高强度关系曲线;根据分离电压与峰高强度关系和分离电压与峰高强度关系曲线;固定分离电压,等梯度改变流速,获取载气流速与峰高强度关系计算得到离子中和及扩散损耗;e、以待测物为定量分析样品,重复步骤b,获取该样品的饱和流速值Qs;固定载气流速在大于该饱和流速的条件下,对待测样品进行高场不对称波形离子迁移谱分析;以20V为间隔,依次获取10组分离电压-峰高关系曲线,基于上述步骤得到的紫外灯电离源电离效率、离子复合损耗以及离子中和及扩散损耗,得到紫外灯电离源-高场不对称波形离子迁移谱宽范围定量方程,计算出不同DV下待测样品浓度值,对求出的10组浓度数据求均值,即为最终待测样品浓度。2.一种如权利要求1所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于步骤a中所述的电离效率的方程为:nin=μ0C;其中,μ0为物质电离效率,C为输入样品浓度,nin为经紫外灯电离源电离得到的目标离子浓度。3.一种如权利要求1所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于步骤c中所述的离子复合损耗方程为:其中nout为离子传输过程中经离子复合作用后剩下的目标离子浓度,ρ为离子复合损耗系数,tres为离子传输时间,Q为载气流速,l为离子传输距离,s为气体通道截面积。4.一种如权利要求3所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于:当即时,在大流量条件下,检测信号强度与流速无关,正比于样品浓度,通过改变样品浓度,检测离子信号强度I,获取C-I曲线,求解斜率即可求出该分析物的紫外灯电离效率,5.一种如权利要求3所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于:当即时,在小流速条件下,信号强度正比于气体流速;通过改变气体流速,检测信号强度I,从而获取Q-I曲线,求解斜率即可求出离子复合损耗系数,6.种如权利要求1所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于步骤d中所述的离子中和及扩散损耗方程为:其中L为离子传输系数,等于分离区出口离子浓度与入口离子浓度之比,D为扩散系数,g为有效间距,等于分析通道高度与损耗高度之差。7.种如权利要求1所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于步骤e中所述的紫外灯电离源-高场不对称波形离子迁移谱宽范围定量方程具体为:其中H为目标离子峰峰高。8.种如权利要求7所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于:时,9.种如权利要求7所述的挥发性有机物的UV-FAIMS定量检测方法,其特征在于:当时,

百度查询: 中国科学院合肥物质科学研究院 一种挥发性有机物的UV-FAIMS定量检测方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术