买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:北京工业大学
摘要:本发明公开了基于堆叠宽度学习系统的运动想象任务增量学习方法,对初始任务的运动想象脑电进行带通滤波,利用小波包变换对滤波后的信号进行时频分解,并经信号重构后获得多个窄带信号;再基于子频带优选和共空间模式算法提取全局空间特征,通过黎曼流形嵌入及特征优选提取局部空间特征;针对初始运动想象任务,将全局、局部空间特征同时输入双分支特征映射层,建立第一个子宽度学习系统,并在增量任务阶段保持系统参数冻结和共享;对于每个增量任务,以残差连接的方式堆叠一个新增子系统以保持对旧任务的记忆,而新增增强节点用于学习新任务特征。本方法已在公开数据集上得到验证,该数据集包含三种上肢不同部位的六类运动想象任务。
主权项:1.基于堆叠宽度学习系统的运动想象任务增量学习方法,其特征在于,包括如下步骤:Step1,信号预处理、时频分解与子频带信号重构;Step2,设计基于子频带优选和共空间模式的全局空间特征提取算法、基于黎曼流形嵌入和特征优选的局部空间特征提取算法,分别提取Step1中重构信号的全局、局部空间特征;Step3,融合Step2中提取的特征为全局、局部多视图空间特征,作为模型输入训练面向任务1子BLS,记作BLS-1;Step4,评估Step3中BLS-1输出权重对任务1的重要性,封装模型,记作TiBLS-1;Step5,针对新增任务,重复Step1~Step4并引入输出层权重重要性约束指导新增子BLS参数更新,以残差连接的方式堆叠多个与任务对应的子BLS。
全文数据:
权利要求:
百度查询: 北京工业大学 基于堆叠宽度学习系统的运动想象任务增量学习方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。