买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:江苏大学
摘要:本发明公开一种基于图神经网络和注意力机制的会话推荐方法,将会话数据转化三种图数据结构,对于所得边序图、短连图和全局图,通过图神经网络和注意力机制学习项目在会话上下文和在全局上下文中表示,并将两个项目表示融合且融入位置信息;然后通过自注意力机制获取项目间的内在关联,接着利用软注意力机制计算不同位置的不同项目对当前会话重要性,获得最终会话表示,使用最终会话表示预测下一个点击项目。本发明当前会话输入图使用边序图和短连图,通过交叉堆叠处理两种图的图神经网络层,在减少信息损失同时,也能在减少不相关信息干扰情况下捕获更远距离依赖,通过全局图使项目表示得到进一步增强,从而获得更多与当前会话相关项目信息,进一步提高推荐准确性。
主权项:1.一种基于图神经网络和注意力机制的会话推荐方法,其特征在于,包括以下步骤:S1、获取会话数据,并转化构建三种图数据结构:边序图、短连图和全局图;所述边序图构建方法为按照入边顺序给每个项目的入边标记序号,并标记最后一个项目;所述短连图构建方法为给图中每个顶点加上自连接,并给向后几个项目添加连接;所述全局图用于构建会话间联系,构建方法为将所有会话中项目的邻居直接相连,并将连接边的权重值表示为这条边出现的次数;S2、对于构建所得边序图、短连图和全局图,通过图神经网络和注意力机制学习项目在会话上下文和在全局上下文中表示,并将得到的两个级别表示融合且融入位置信息;具体过程为:S21、对于边序图,先通过神经网络GRU来聚合邻居信息从而能够保留顺序信息,再结合节点表示对节点i自身进行更新,得到边序图中更新后的节点表示l表示神经网络GRU中第l层;S22、对于短连图,利用自注意力机制对对其节点a进行节点更新,得到更新后的节点表示S23、交叉堆叠多个处理边序图和短连图的图神经网络层,分别记为EOP层和SGA层,并且在每一层将之前所有层的输出通过拼接作为当前层的输入;经过堆叠的多层网络,得到当前会话图中项目的最终项目表示S24、对于全局图,将每个项目的邻居通过软注意力线性结合,而对应权重则通过邻居与当前会话相关性以及边权重值计算得出,得到最终项目在全局上下文表示后,将其与在会话上下文表示融合h′v;S25、将反向位置信息融合,得到融合位置信息的项目表示mi;S3、完成步骤S2的融合位置信息后,通过自注意力机制获取项目间的内在关联,即EN=[e1,e2,…,eL];具体步骤如下:在融合位置信息mi之后,首先通过自注意力捕获项目间的内在关联,具体定义如下: 其中,R为经过自注意力后的会话项目表示,M=[m1,m2,…,mL],WV、WK、WQ是可学习参数,d为自注意力中键向量维度;L为当前会话长度;然后再经过前馈网络,使用relu函数增加非线性,并在前馈网络后添加残差连接,具体定义如下:E=W7reluW6R+b4+b5+R其中,W7、W6、b4、b5皆为可学习参数,relu为激活函数;经过N次自注意力层,得到多层自注意力网络最终输出Ej=[e1,e2,…,eL];S4、利用软注意力机制计算不同位置的不同项目对当前会话重要性,来计算最终会话表示S,并使用最终会话表示S预测下一个点击项目,具体步骤如下:步骤S41、利用软注意力机制计算不同位置的不同项目对当前会话重要性,从而计算出最终的会话表示,具体定义如下: 其中,S为最终会话表示,为融合全局上下文和当前会话上下文的项目表示,q3、W8、W9、b6为可学习参数,βi表示节点i对应注意力系数;s′为会话信息,通过用软注意力机制获得s′,具体定义如下: β′=softmax∈′ 其中,q4、W2′、W3′、b′2均为可学习参数;步骤S42、通过交叉熵损失函数将最终得到的会话表示S用于预测下一个点击项目概率,具体定义如下: 其中,为预测项目下一个被点击概率,yi表示真实值,为项目独热编码血量,n为所有项目个数。
全文数据:
权利要求:
百度查询: 江苏大学 一种基于图神经网络和注意力机制的会话推荐方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。