首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种抑郁障碍检测模型训练方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:合肥工业大学

摘要:本发明公开了一种抑郁障碍检测模型训练方法,属于数据处理技术领域。该方法包括获取训练数据集,输入当前域和前一域,进行特征提取及预测,利用JS散度以及训练数据集中的类别信息动态学习类定制的阈值,为训练数据集中的每个类使用相应类定制的阈值进行样本选择,将样本选择结果进行域内对齐,区分样本相似性,有效缩小这些领域之间的差距。这样的对齐过程鼓励从各个领域提取的特征变得更加紧凑,从而显著提高了对新数据的适应性,减轻了灾难性遗忘,有利于提高抑郁障碍检测准确性及效率。

主权项:1.一种抑郁障碍检测模型训练方法,其特征在于,包括以下步骤:获取训练数据集以及前一个域的训练模型;将获取的训练数据集进行训练,得到特征提取网络模型;通过所述特征提取网络模型分别输入当前域训练的模型以及前一个域的训练模型,比较预测值,得到训练数据集中不同类别样本上的标签预测结果;利用JS散度比较预测结果之间的差异;利用JS散度以及训练数据集中的类别信息动态学习类定制的阈值;为训练数据集中的每个类使用相应类定制的阈值进行样本选择;具体地,开发域内比对模块,利用训练有素的模型识别新训练数据中的相似和不相似样本集,随后探索相似样本中的信息,以构建与历史数据特征分布的近似值;将样本选择结果进行域内对齐;具体地,基于与前一个域相似的样本设计域内对齐模块,以鼓励与前一个域不相似的样本在特征空间中更接近根据样本相似性得到域对齐损失函数,并通过所述域对齐损失函数进行域增量学习,从而得到训练好的抑郁障碍检测模型。

全文数据:

权利要求:

百度查询: 合肥工业大学 一种抑郁障碍检测模型训练方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术