Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

基于模态层次融合的多模态知识图谱补全方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

摘要:本发明提出基于模态层次融合的多模态知识图谱补全方法,使用多模态知识图谱补全模型MHF来引入视觉特征和文本特征,模型包括:独立学习层:从多个模态分割的数据集的知识图谱独立学习结构嵌入、视觉嵌入、文本嵌入,同时采用缩放因子调整外部特征的规模;模态融合层:将结构特征分别与视觉特征和文本特征融合,得到两种融合嵌入,纳入最终的损失计算;语义约束层:通过因子交互正则化器对前述五种嵌入进一步处理,处理过程产生的额外的五个正则化损失项,计算在最终损失中;本发明通过整合结构数据与外部数据,从而更合理地应用视觉数据和文本数据,有效地提高了模型的表达能力,为知识图谱中实体的全面性和准确性表示提供了新的思路。

主权项:1.基于模态层次融合的多模态知识图谱补全方法,能用于补全或增强多模态数据集的知识图谱,其特征在于:所述补全方法使用基于模态层次融合的多模态知识图谱补全模型MHF来引入视觉特征和文本特征,所述多模态知识图谱补全模型MHF包括:独立学习层:从多个模态分割的数据集的知识图谱独立学习结构嵌入Xs、视觉嵌入Xv、文本嵌入xt,同时采用缩放因子调整外部特征的规模;模态融合层:将结构特征分别与视觉特征和文本特征融合,得到两种融合嵌入,纳入最终的损失计算;语义约束层:通过因子交互正则化器对前述五种嵌入进一步处理,处理过程产生的额外的五个正则化损失项,计算在最终损失中。

全文数据:

权利要求:

百度查询: 福州大学 基于模态层次融合的多模态知识图谱补全方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。

相关技术
相关技术
相关技术
相关技术