买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:广东电网有限责任公司东莞供电局
摘要:本发明涉及电池领域,公开了一种基于ACO‑GMR的储能电站电池健康状态估计方法,包括:首先,获取储能电站运行时电池充电的电压、电流、温度以及时间数据,并将其进行异常数据处理,减少干扰。之后从获取的数据中提取电池健康状态的健康指标,这些提取的健康指标从不同角度反映了电池老化过程的动态模式。其后利用改进的高斯混合模型算法对模型进行训练,其中高斯混合模型超参数采用蚁群智能算法进行优化。最后将测试集输入到改进的高斯混合模型模型中,得到测试集中电池SOH估计结果。该方法能够提高GMR方法应用于储能电站电池SOH估计的泛化性与鲁棒性。
主权项:1.一种基于ACO-GMR的储能电站电池健康状态估计方法,其特征在于,包括如下步骤:步骤A.从获取的数据中提取电池健康状态的健康指标;步骤B.利用改进的高斯混合模型算法对模型进行训练,其中高斯混合模型的超参数采用蚁群智能算法进行优化;步骤C.将测试集输入到改进的高斯混合模型模型中,得到测试集中电池SOH估计结果。
全文数据:
权利要求:
百度查询: 广东电网有限责任公司东莞供电局 基于ACO-GMR的储能电站电池健康状态估计方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。