买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:齐鲁工业大学(山东省科学院);山科华智(山东)机器人智能科技有限责任公司
摘要:本发明涉及风力发电领域,特别是涉及基于混沌‑同态加密和联邦学习的风电预测系统及方法,所述系统包括密钥生成端、代理端、服务端和本地客户端。本发明采用联邦学习技术,能够实现高度准确的风电预测,有助于提高风电能源的利用效率;通过混沌‑同态加密技术,严格保护本地数据,不会泄露敏感信息,确保数据在本地客户端的安全性与隐私性;鼓励利益相关者之间的合作,共同构建了本地客户端和云服务端之间的风电预测系统,有助于促进风电场的高效并网以及现代能源系统中数据的高效利用和共享,解决了现有风电预测系统中存在的敏感数据隐私泄露风险和安全性不足的问题。
主权项:1.基于混沌-同态加密和联邦学习的风电预测方法,其特征在于,包括以下步骤:步骤1、密钥生成端生成四阶密钥矩阵,并将所述密钥矩阵处理后分发给服务端、代理端和对应的本地客户端Pj,j=1,2,3,...,l,l为本地客户端的总数;然后退出系统并销毁所有与密钥相关的信息,同时服务端初始化联邦学习模型中的全局模型参数并指定交流轮数T;步骤2、服务端随机选择n个本地客户端参与联邦学习的建模任务,在初次通信时,服务端将经过初始化后未加密的全局模型参数通过代理端分发给参与联邦学习建模的本地客户端,并标记为Nj,j=1,2,3,...,n;步骤3、本地客户端Nj在接收到模型参数后,加载本地风电场数据集,然后使用分发得到的模型参数进行本地训练,按照预先定义的迭代次数训练本地数据,将本次训练好的模型参数使用本地密钥K’j进行初次加密并上传至代理端;代理端将经过初次加密后的模型参数使用对应的代理密钥K’’j再次对模型参数进行加密,并将再次加密后的模型参数上传至服务端;步骤4、服务端确认已收集到来自n个本地客户端的加密模型参数,对各个已加密模型参数使用对应的服务密钥K’’’j再次加密;并在不知道真实参数的情况下对经过服务端密钥加密后的加密模型参数进行同态运算以获得密文聚合参数,同时将获得的密文聚合参数更新到服务端的全局模型参数;步骤5、服务端将聚合后的密文全局模型参数经过对应的服务密钥K’’’j解密发送至代理端,同时重新随机选择m个本地客户端;步骤6、代理端接收到来自服务端的加密模型参数后,使用相应的代理密钥K’’j对模型参数进行解密,将解密后的模型参数分别发送至对应的本地客户端Nj;步骤7、本地客户端Nj在接收到代理端发送的解密后的模型参数后,使用本地密钥K’j对解密后的模型参数再次执行解密操作,并加载本地风电场数据集,然后使用解密后的模型参数进行本地训练,并按照预先定义的迭代次数训练本地数据,并将本次训练好的模型参数使用本地密钥K’j进行加密并上传至代理端;然后代理端将经过初次加密后的模型参数使用对应的代理密钥K’’j再次对模型参数进行加密,并将加密后的模型参数上传至服务端;步骤8、服务端重新确认已收集到来自m个本地客户端的加密模型参数,对各个已加密模型参数使用对应的服务密钥K’’’j再次加密,并在不知道真实参数的情况下对经过服务端密钥加密后的加密模型参数进行聚合操作以获得密文聚合参数,同时更获得的密文聚合参数更新到服务端的全局模型参数;步骤9、按预先定义循环执行步骤5至步骤8操作T次后生成训练好的全局模型;服务端将训练好的全局模型通过代理端端分发至各个本地客户端Pj,然后本地客户端Pj更新本地模型,将采集到的风电数据参数输入到训练好的模型中,完成风电预测,所述风电数据参数包括风力和风向。
全文数据:
权利要求:
百度查询: 齐鲁工业大学(山东省科学院) 山科华智(山东)机器人智能科技有限责任公司 基于混沌-同态加密和联邦学习的风电预测系统及方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。