买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:西安理工大学
摘要:基于散布Lempel‑Ziv熵的水声信号特征提取方法,首先导入不同类别的实测水声信号,进行正态累积分布映射以及归一化处理,将信号转变为新的时间序列;其次通过相空间重构将时间序列分解为多个子序列;计算每个子序列的Lempel‑Ziv复杂度,并统计整个相空间中各个复杂度出现的次数以及对应的频率;最后采用香农熵的计算公式去计算散布Lempel‑Ziv熵的值,并作为水声信号特征进行输出。相较于单纯基于Lempel‑Ziv复杂度或者散布熵的特征提取方法,采用本发明方法,可以提取更具稳定性以及可分性的水声信号非线性动力学特征,从而实现不同类别水声信号的分类。
主权项:1.基于散布Lempel-Ziv熵的水声信号特征提取方法,其特征在于,包括以下步骤:步骤1:对于一段给定的水声信号序列X=xi,i=1,2,3..N,首先按照数据预处理步骤,通过正态累积分布映射,将序列X中每一个值xi映射到[0,1]的区间内,然后再通过round函数将每个yi转变为区间是[1,c]的整数,其中c是类别数,公式如下: 式中,μ和σ分别是输入时间序列X的均值以及标准差,xi是序列X中的第i个样本,yi是对xi进行正态累积分布映射得到的值,是对yi进行round函数得到的值,N是信号序列X的长度;步骤2:水声信号序列X经过步骤1的预处理之后,得到一个新的序列通过相空间重构,将序列Z转化成一个包含多个子序列的相空间: 式中,主要涉及到两个新的参数,一个是嵌入维数m,代表着相空间的列数,即根据m的设定,可以确定每一行的元素个数;第二个参数是时间延迟τ,根据τ的设定可以确定每一行由哪些元素构成,即每一行的后一个元素是前一个元素在序列Z中的后τ个元素,通常取1,相空间的第一行就是从序列Z的第一个元素开始,第二行从第二个元素开始,由于总共只有N个元素,所以相空间一共有N-m-1τ个子序列,每一个子序列都对应一个模式;步骤3:针对第k个子序列Ykk={1,2,3...N-m-1τ},按照以下步骤计算复杂度:步骤3.1:初始化Yk的计数值ik=1,复杂度值ck=1,分别定义两个空集合Sk跟Qk,用于计算后续的复杂度;步骤3.2:令Sk是Yk中前ik个元素的集合,Qk是Yk中第ik+1个元素;步骤3.3:令ik=ik+1,取Sk与Qk的并集得到SQk,然后将SQk去掉最后一个元素得到一个新的集合SQvk,判断此时的Qk∈SQvk,如果Qk∈SOvk,跳到步骤3.5;否则跳到步骤3.4;步骤3.4:令ck=ck+1,判断是否ikm,如果大于,跳到步骤3.6,否则返回步骤3.2;步骤3.5:令Sk=SQvk,Qk={Qk,yi+1},判断是否ikm,如果大于则跳到步骤3.6,否则返回步骤3.2;步骤3.6:针对每个子序列,重复步骤3.1~3.5,将原始的相空间转换为由N-m-1τ个复杂度构成的向量,其中m是嵌入维数,N是信号序列X的长度,τ是时间延迟;步骤4:统计相空间中每一类cq的出现次数,比上子序列的总个数N-m-1τ,求得最终的复杂度概率: 式中,Pcq是最终的复杂度概率,Num{cq}是模式cq出现的次数,N是序列长度,m是嵌入维数,τ是时间延迟;步骤5:根据复杂度概率计算最后的散布Lempel-Ziv熵值,并进行归一化: NDLZEX,m,c,τ=DLZEX,m,c,Tlnm式中,DLZEX,m,c,τ是未经归一化得到的熵值,NDLZEX,m,c,τ则是对DLZEX,m,c,τ进行了归一化,并作为最终的水声信号特征进行输出。
全文数据:
权利要求:
百度查询: 西安理工大学 基于散布Lempel-Ziv熵的水声信号特征提取方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。