Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于纵向联邦学习的参与方对齐样本生成系统 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

摘要:本发明涉及一种基于纵向联邦学习的参与方对齐样本生成系统,属于数据生成填补技术领域,包括:多方属性相关性矩阵构建模块:用于将多个参与方的样本数据集进行对齐,并计算各参与方之间每个属性的相关性,构建多方属性相关性矩阵;属性对对应关系建立模块:用于根据多方属性相关性矩阵,分别从对齐样本数据集的各方中找出具有强相关性的属性对,建立该属性对中两个属性列所有取值间的对应关系;缺失值生成模块:用于根据对应关系,建立两个属性列取值的关联规则,对参与方属性列的缺失值进行生成;生成对抗填补模块:利用参与方数据样本和生成的属性列缺失值对参与方剩余属性列的缺失值进行生成填补,获得完整的多方联合对齐样本数据集。

主权项:1.一种基于纵向联邦学习的参与方对齐样本生成系统,其特征在于:包括:多方属性相关性矩阵构建模块:用于将多个参与方的样本数据集进行对齐,并计算各参与方之间每个属性的相关性,构建多方属性相关性矩阵;属性对对应关系建立模块:用于根据多方属性相关性矩阵,分别从对齐样本数据集的各方中找出具有强相关性的属性对,建立该属性对中两个属性列所有取值间的对应关系;缺失值生成模块:用于根据对应关系,建立两个属性列取值的关联规则,对参与方属性列的缺失值进行生成;生成对抗填补模块:将参与方数据样本和生成的属性列缺失值输入基于变分自编码器的生成对抗填补模型,对参与方剩余属性列的缺失值进行生成填补,获得完整的多方联合对齐样本数据集。

全文数据:

权利要求:

百度查询: 重庆邮电大学 一种基于纵向联邦学习的参与方对齐样本生成系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。