首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:西安云脉智能技术有限公司

摘要:本发明公开了一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,本发明通过对VAD检测得到有效帧进行Fourier变换得到声源信号的所有特征子频,然后重建特征子频的协方差矩阵和导向矢量计算方程,在对协方差矩阵元素进行PTA分解重组,将阵元间接收数据相位差转化为声源入射角度,最后根据麦克风阵元组合以及特征子频矢量,对信号入射角度进行最优加权,从而得到信号源的DOA估计;使得MVDR加权向量运算得到简化,从而提高DOA估计指向性和准确度,得以解决现有波束成形算法工程实现效率和定位准确度不高的缺陷。

主权项:1.一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,包括以下操作:1对麦克风阵列接收的声音数据进行归一化的声强校准后分帧处理,再经VAD检测得到包含目的声源的声源有效帧;2对检测得到的声源有效帧进行Fourier变换得到声源信号的所有特征子频;3选取所有阵元接收信号的特征子频,重建特征子频的协方差矩阵;其中,协方差矩阵由阵列流形矢量与Fourier变换得到的接收信号乘积得到,其非对角元素已包含相邻阵元间的时延表达;4将协方差矩阵非对角矢量进行自适应相角转换后进行相位求差,再根据欧拉方程求解,将非对角矢量相位差转化为信号入射方向的俯仰角,进而求得信号入射方向的方位角;5根据麦克风阵元组合以及特征子频矢量,对信号入射方向的俯仰角和方位角进行最优加权,从而得到目的声源的DOA估计;所述的Fourier变换包括以下操作:21设定有效声源的平面波信号从球面角θ=α,β入射到麦克风阵列,其中α和β分别为水平方向角和垂直俯仰角,将信号入射方向的单位向量表示为vθ=-[sinβcosαsinβsinαcosβ]T,其中T为转置;22平面波到达第m号阵元相对于作为参考点的第n号阵元的时间延迟表示为τmθ=vTθpmcm=1,…,M,其中c是声波传播速度,τmθ是第m号阵元与第n号阵元之间的时间延迟,pm是第m号阵元的位置;23设在参考点位置处的阵元接收到的波形为st,则经过传播时延,在第m号阵元接收到的波形为smt=s[t-τmθ]m=1,…,M;24将声源有效帧中麦克风阵列的接收信号表示成M×1维向量形式为:xst=[s1t…smt…sMt]T,xst是M个阵元接收信号的波形;25对声源有效帧的接收信号做Fourier变换得到: 其中Smω为Fourier变换后的接收数据,ω为相位,j为单位复数;所述重建特征子频的协方差矩阵的操作为:设定有效帧的目的声源信号为能量矩阵中的阵列流形矢量与Fourier变换得到的接收数据Smω的乘积,得到协方差矩阵Rn;阵列流形矢量为||ak||2=aHkak=M’,其中波数k为||||表示范数,H表示共轭转置,M’为设定常数,ak为流形矢量;则协方差矩阵Rn为:协方差矩阵Rn非对角元素已包含相邻阵元间的时延表达;协方差矩阵Rn进行自适应相角转换为:41协方差矩阵Rn经过对角加载计算Rn+eyen得到矩阵Rxx,x为矩阵Rxx的非对角元素;42对矩阵Rxx求逆得到Rinv,其中Rinv的几何含义表示为特征子频相位差43将阵列流形矢量a与求逆协方差矩阵Rinv相乘,其乘积为Φ;选择Rinv的四项元素作为x1阵元和x2阵元在特征子频上的相位差表示,定义其中a1为第一阵元的阵列流形矢量;a2为第二阵元的阵列流形矢量,表示a1的共轭转置;对Φ进行求解得到:再将阵列流形矢量a1分解为矢量表示表示为角度差f为特征子频的频率,d为阵元的笛卡尔坐标,则Φ可表示为: δ为x阵元特征子频的相位;化简可得44所述相位求差是使得minΦ则可得特征子频的相位差 Δd为阵元坐标数值差;minΦ为Φ最小。

全文数据:一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法技术领域本发明属于基于麦克风阵列技术领域,涉及一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法。背景技术基于麦克风阵列的DOA估计在无线通信、语音识别等领域获得了广泛的应用。常规的DOA估计方法包含基于时延的GCC算法、基于线性预测的MVDR算法以及基于信号子空间分解的MUSIC算法等。过去的三十多年中,基于传统方法的众多改进算法被提出来,并受到广大学者的关注与重视,并在算法性能上表现出高分辨率、高估计精度等优点。然而在实际工程中,由于受到阵列接收性能、噪声信号干扰以及多重声源混合的影响,使得改进算法对DOA估计的准确度严重下降。对于设计性能优良的自适应波束成形方法,考虑到稳健性,算法优化以及干扰抑制三方面因素,因此会采用一些技术措施达到此目的。GCC方法通过计算阵元接收信号时间差,将信号互相关函数的极值作为延迟特征,但是实际的信号会有噪声,低信噪比会导致互相关函数的峰值不够明显,这会在找极值的时候造成误差;MUSIC算法则是对任意阵列输出数据的协方差矩阵进行特征分解,从而得到与信号分类相对应的信号子空间和与信号分量相正交的噪声子空间,然后利用这两个子空间的正交性构造空间谱函数,通过谱峰搜索,检测声源。但是由于特征值分解过程中对于噪声抑制的左右有限,导致声源个数估计的效率有限,造成DOA估计的误差;传统的MVDR算法通过对角加载处理采样数据协方差矩阵,使之更接近于理想的干扰加噪声矩阵,能增强稳健性,但这种方法缺乏严格的理论基础来准确的选择最优加载矩阵,对于其不确定集在不同的背景下难以确定。以上这些算法总是存在着各自的缺点不能再增强稳健性的同时满足DOA准确性的要求。发明内容本发明解决的技术问题在于提供一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,能够简化MVDR加权向量运算,从而提高DOA估计指向性和准确度,克服现有波束成形算法工程实现效率和定位准确度不高的缺陷。本发明是通过以下技术方案来实现:一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,包括以下操作:1对麦克风阵列接收的声音数据进行归一化的声强校准后分帧处理,在经VAD检测进行得到包含目的声源的声源有效帧;2对检测得到的声源有效帧进行Fourier变换得到声源信号的所有特征子频;3选取所有阵元接收信号的特征子频,重建特征子频的协方差矩阵;其中,协方差矩阵由阵列流形矢量与Fourier变换得到的接收信号乘积得到,其非对角元素已包含相邻阵元间的时延表达;4将协方差矩阵非对角矢量进行自适应相角转换后进行相位求差,再根据欧拉方程求解,将非对角矢量相位差转化为信号入射方向的俯仰角,进而求得信号入射方向的方位角;5根据麦克风阵元组合以及特征子频矢量,对信号入射的角度进行最优加权,从而得到目的声源的DOA估计。所述的声源有效帧的获取为:处在交通路口的麦克风阵列对辐射纵深5~50m、横向-15~15米范围内的声音进行采样,采样得到的声音数据X传入FPGA模块并进行归一化的声强校准,然后通过VAD检测模块对接收的声音数据X进行分帧处理;再基于自适应负熵法对接收数据X进行VAD检测,以以鸣笛声作为有效声源,得到包含鸣笛声的声源有效帧。所述重建特征子频的协方差矩阵的操作为:设定有效帧的目的声源信号为能量矩阵中的阵列流形矢量与Fourier变换得到的接收信号Sm的乘积,得到协方差矩阵Rn;阵列流形矢量为||ak||2=aHkak=M,其中波数k为||||表示范数,H表示共轭转置,M为设定常数;则协方差矩阵Rn为:协方差矩阵Rn非对角元素已包含相邻阵元间的时延表达。本发明与现有技术相比,本发明具有以下有益的技术效果:本发明通过对VAD检测得到有效帧进行Fourier变换得到声源信号的所有特征子频,然后重建特征子频的协方差矩阵和导向矢量计算方程,在对协方差矩阵元素进行PTA分解重组,将阵元间接收数据相位差转化为声源入射角度,最后根据麦克风阵元组合以及特征子频矢量,对信号入射角度进行最优加权,从而得到信号源的DOA估计;使得MVDR加权向量运算得到简化,从而提高DOA估计指向性和准确度,得以解决现有波束成形算法工程实现效率和定位准确度不高的缺陷。本发明的计算复杂度低:通过挖掘特征子频矢量的几何特性得到协方差矩阵非对角元素的特征本质,经重建特征子频的协方差矩阵非对角元素,将阵元接收信号的矢量相位差通过欧拉公式转换为入射方向的俯仰角和方位角,减少了能量矩阵加权向量的计算复杂度;与已有的MVDR波束成型改进算法相比,有效的对噪声起到了干扰抑制且通过矢量几何特性发掘DOA估计本质。本发明的稳健性较好:通过Fourier变换得到的声源特征子频具有生源方向在阵元接收延迟上的有效体现,阵元间有效子频矢量的相位差从深度特征上体现了波束成形方法在DOA估计上的信号方向,对比现有基于线性预测波束成形方法能量矩阵的计算过程,本发明的PTA-MVDR的DOA估计准确性较高,且对于不同信噪比下稳健性较好。附图说明图1为本发明基于PTA-MVDR的DOA估计方法的主流程图;图2为图1中协方差矩阵非对角元素分解重建以及相角转换的流程图;图3为-10dB~10dB信噪比时,采用本发明方法得到的DOA估计散点图,其中,散点为不同信噪比下的每次DOA估计散点未标注次序,-10dB~10dB下的DOA估计一共有21次DOA结果;图4为-10dB~10dB信噪比时,采用本发明方法每次DOA估计误差率的趋势图,采用均方误差值反应估计结果与真实声源方向的计算精确度,其中横轴为-10dB~10dB信噪比下每次DOA估计的计算误差,纵轴为误差百分比;图5为-10dB~10dB信噪比时,采用本发明方法每次运算时间变化趋势图,通过运行时间及计算效率反应算法复杂度。具体实施方式下面结合附图对本发明做进一步详细描述,所述是对本发明的解释而不是限定。参见图1、图2,本发明在MVDR波束成形算法的基础上,增加了协方差矩阵相角转化的分解重建,构建出基于相角转换PhaseToAngle,PTA的PTA-MVDR方法来进行DOA估计,包括以下操作:1对麦克风阵列接收的声音数据进行归一化的声强校准后分帧处理,在经VAD检测进行得到包含目的声源的声源有效帧;2对检测得到的声源有效帧进行Fourier变换得到声源信号的所有特征子频;3选取所有阵元接收信号的特征子频,重建特征子频的协方差矩阵;其中,协方差矩阵由阵列流形矢量与Fourier变换得到的接收信号乘积得到,其非对角元素已包含相邻阵元间的时延表达;4将协方差矩阵非对角矢量进行自适应相角转换后进行相位求差,再根据欧拉方程求解,将非对角矢量相位差转化为信号入射方向的俯仰角,进而求得信号入射方向的方位角;5根据麦克风阵元组合以及特征子频矢量,对信号入射的角度进行最优加权,从而得到目的声源的DOA估计。下面对各个步骤进行具体的说明。所述的声源有效帧的获取为:处在交通路口的麦克风阵列对辐射纵深5~50m、横向-15~15米范围内的声音进行采样,采样得到的声音数据X传入FPGA模块并进行归一化的声强校准,然后通过VAD检测模块对接收的声音数据X进行分帧处理;再基于自适应负熵法对接收数据X进行VAD检测,以以鸣笛声作为有效声源,得到包含鸣笛声的声源有效帧。所述的Fourier变换包括以下操作:21设定有效声源的平面波信号从球面角θ=α,β入射到麦克风阵列,其中α和β分别为水平方向角和垂直俯仰角,将信号入射方向的单位向量表示为vθ=-[sinβcosαsinβsinαcosβ]T,其中T为转置;22平面波到达第m号阵元相对于作为参考点的第n号阵元的时间延迟表示为τmθ=vTθpmcm=1,…,M,其中c是声波传播速度,τ是第m号阵元与第n号阵元之间的时间延迟,pm是第m号阵元的位置;23设在参考点位置处的阵元接收到的波形为st,则经过传播时延,在第m号阵元接收到的波形为smt=s[t-τmθ]m=1,…,M;24将声源有效帧中麦克风阵列的接收信号表示成M×1维向量形式为:xst=[s1t…smt…sMt]T,xs是M个阵元接收信号的波形;25对声源有效帧的接收信号做Fourier变换得到:其中Sm为Fourier变换后的接收数据,ω为相位,j为单位复数。所述重建特征子频的协方差矩阵的操作为:设定有效帧的目的声源信号为能量矩阵中的阵列流形矢量与Fourier变换得到的接收信号Sm的乘积,得到协方差矩阵Rn;阵列流形矢量为||ak||2=aHkak=M,其中波数k为||||表示范数,H表示共轭转置,M为设定常数;则协方差矩阵Rn为:协方差矩阵Rn非对角元素已包含相邻阵元间的时延表达。进一步的,所述对协方差矩阵Rn进行自适应相角转换为:41协方差矩阵Rn经过对角加载计算Rn+eyen得到矩阵Rxx,x为矩阵Rxx的非对角元素;42对矩阵Rxx求逆得到Rinv,其中Rinv的几何含义表示为特征子频相位差43将阵列流形矢量a与求逆协方差矩阵Rinv相乘,其乘积为Φ;选择Rinv的四项元素作为x1阵元和x2阵元在特征子频上的相位差表示,定义其中表示a1的共轭转置;对Φ进行求解得到:再将阵列流形矢量a分解为矢量表示表示为角度差f为特征子频的频率,d为阵元的笛卡尔坐标,则Φ可表示为:δ为x阵元特征子频的相位;化简可得44所述相位求差是使得minΦ则可得特征子频的相位差Δd为阵元坐标数值差。所述的信号入射的方位角的操作为:由欧拉公式可知ejδ=cosδ+jsinδ,进而将Rinv元素转化为δ表达;通过vθ与δ的运算关系,将特征子频的相位差转化为信号入射角度。下面给出完整的实施例。基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,包括以下操作:1在交通路口,麦克风阵列MEMS阵列对辐射纵深方向的5~50m、横向范围-15~15米的声音进行采样,采样得到的声音数据X传入FPGA模块并进行归一化的声强校准,之后通过VAD检测模块对接收的声音数据X进行分帧处理,基于自适应负熵法对接收数据X进行VAD检测,得到声源有效帧以鸣笛声作为有效声源,则包含鸣笛声的分帧为有效帧;2在FPGA模块中,设定鸣笛平面波信号从球面角θ=α,β入射到接收阵列,其中α和β分别为水平方向角和垂直俯仰角,将信号入射方向的单位向量可以表示为vθ=-[sinβcosαsinβsinαcosβ]T,其中T为转置;3平面波入射到MEMS接收阵列,由于各阵元的相对平面波距离不同,经过不同的传播时间后到达各阵元。平面波到达第m号阵元相对于第n号阵元参考点的时间延迟可以表示为τmθ=vTθpmcm=1,…,M,其中c是声波传播速度,τ是第m号阵元与第n号阵元之间的时间延迟,pm是第m号阵元的位置;4假设在参考点位置处的阵元接收到的波形为st,则经过传播时延,在第m号阵元接收到的波形为smt=s[t-τmθ]m=1,…,M;5将MEMS接受阵列的接收信号表示成M×1维向量形式为xst=[s1t…smt…sMt]T,xs是M个阵元接收信号的波形。6对接收信号做Fourier变换得到:Sm为Fourier变换后的接收数据,ω为相位,j为单位复数。7设定有效帧的鸣笛信号由阵列流形矢量与Sm乘积得到的能量矩阵作为协方差矩阵;8设定能量矩阵中的阵列流形矢量||ak||2=aHkak=M,其中波数k为||||表示范数,H表示共轭转置,M为设定常数,a为阵列流形矢量;则有效帧的鸣笛信号由阵列流形矢量与Sm乘积得到以下能量矩阵作为协方差矩阵其中协方差矩阵Rn非对角元素已包含相邻阵元间的时延表达,故而对协方差矩阵Rn进行以下PTA分解重建。9协方差矩阵Rn经过对角加载计算Rn+eyen得到矩阵Rxx,x为矩阵Rxx的非对角元素。对矩阵Rxx求逆得到10Rinv的几何含义表示为特征子频上相位差,11通过阵列流形矢量a第8步与求逆协方差矩阵Rinv的乘积Φ,可以得到子频相位差与入射角度之间的关系;12选择Rinv的四项元素作为x1阵元和x2阵元在特征子频上的相位差表示,定义其中a1为第一阵元的阵列流形矢量;a2为第二阵元的阵列流形矢量,表示a1的共轭转置;13对Φ进行求解可得,14将阵列流形矢量a分解为矢量表示表示为角度差f为特征子频的频率,d为阵元的笛卡尔坐标。15则Φ可表示为:δ为x阵元特征子频的相位。16化简可得使得minΦ,则可得Δd为阵元坐标数值差,为特征子频的相位差。17由欧拉公式可知ejδ=cosδ+jsinδ,进而将Rinv元素转化为δ表达,则通过vθ与δ的运算关系,将相位差转化为入射角度。18根据麦克风阵元组合以及特征子频矢量,对信号入射的角度进行最优加权,从而得到目的声源的DOA估计。具体的,所述的DOA估计是根据麦克风阵元组合以及特征子频矢量,对信号入射的角度进行估计,并将估计结果依据数据帧的有效性进行最优加权,从而得到目的声源的DOA估计参见图3-图5所示本发明的DOA估计效果;其中,图3为-10dB~10dB信噪比时,采用本发明方法得到的DOA估计散点图,其中,散点为不同信噪比下的每次DOA估计散点未标注次序,-10dB~10dB下的DOA估计一共有21次DOA结果;图4为-10dB~10dB信噪比时,采用本发明方法每次DOA估计误差率的趋势图,采用均方误差值反应估计结果与真实声源方向的计算精确度,其中横轴为-10dB~10dB信噪比下每次DOA估计的计算误差,纵轴为误差百分比;图5为-10dB~10dB信噪比时,采用本发明方法每次运算时间变化趋势图,通过运行时间及计算效率反应算法复杂度。由上图可见,本发明的DOA估计准确性较高,且对于不同信噪比下稳健性较好。以上给出的实施例是实现本发明较优的例子,本发明不限于上述实施例。本领域的技术人员根据本发明技术方案的技术特征所做出的任何非本质的添加、替换,均属于本发明的保护范围。

权利要求:1.一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,包括以下操作:1对麦克风阵列接收的声音数据进行归一化的声强校准后分帧处理,在经VAD检测进行得到包含目的声源的声源有效帧;2对检测得到的声源有效帧进行Fourier变换得到声源信号的所有特征子频;3选取所有阵元接收信号的特征子频,重建特征子频的协方差矩阵;其中,协方差矩阵由阵列流形矢量与Fourier变换得到的接收信号乘积得到,其非对角元素已包含相邻阵元间的时延表达;4将协方差矩阵非对角矢量进行自适应相角转换后进行相位求差,再根据欧拉方程求解,将非对角矢量相位差转化为信号入射方向的俯仰角,进而求得信号入射方向的方位角;5根据麦克风阵元组合以及特征子频矢量,对信号入射的角度进行最优加权,从而得到目的声源的DOA估计。2.如权利要求1所述的基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,所述的声源有效帧的获取为:处在交通路口的麦克风阵列对辐射纵深5~50m、横向-15~15米范围内的声音进行采样,采样得到的声音数据X传入FPGA模块并进行归一化的声强校准,然后通过VAD检测模块对接收的声音数据X进行分帧处理;再基于自适应负熵法对接收数据X进行VAD检测,以以鸣笛声作为有效声源,得到包含鸣笛声的声源有效帧。3.如权利要求1所述的基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,所述的Fourier变换包括以下操作:21设定有效声源的平面波信号从球面角θ=α,β入射到麦克风阵列,其中α和β分别为水平方向角和垂直俯仰角,将信号入射方向的单位向量表示为vθ=-[sinβcosαsinβsinαcosβ]T,其中T为转置;22平面波到达第m号阵元相对于作为参考点的第n号阵元的时间延迟表示为τmθ=vTθpmcm=1,…,M,其中c是声波传播速度,τ是第m号阵元与第n号阵元之间的时间延迟,pm是第m号阵元的位置;23设在参考点位置处的阵元接收到的波形为st,则经过传播时延,在第m号阵元接收到的波形为smt=s[t-τmθ]m=1,…,M;24将声源有效帧中麦克风阵列的接收信号表示成M×1维向量形式为:xst=[s1t…smt…sMt]T,xs是M个阵元接收信号的波形;25对声源有效帧的接收信号做Fourier变换得到:其中Sm为Fourier变换后的接收数据,ω为相位,j为单位复数。4.如权利要求1或3所述的基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,所述重建特征子频的协方差矩阵的操作为:设定有效帧的目的声源信号为能量矩阵中的阵列流形矢量与Fourier变换得到的接收信号Sm的乘积,得到协方差矩阵Rn;阵列流形矢量为||ak||2=aHkak=M,其中波数k为||||表示范数,H表示共轭转置,M为设定常数;则协方差矩阵Rn为:协方差矩阵Rn非对角元素已包含相邻阵元间的时延表达。5.如权利要求4所述的基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,对协方差矩阵Rn进行自适应相角转换为:41协方差矩阵Rn经过对角加载计算Rn+eyen得到矩阵Rxx,x为矩阵Rxx的非对角元素;42对矩阵Rxx求逆得到Rinv,其中Rinv的几何含义表示为特征子频相位差43将阵列流形矢量a与求逆协方差矩阵Rinv相乘,其乘积为Φ;选择Rinv的四项元素作为x1阵元和x2阵元在特征子频上的相位差表示,定义其中a1为第一阵元的阵列流形矢量;a2为第二阵元的阵列流形矢量,表示a1的共轭转置;对Φ进行求解得到:再将阵列流形矢量a分解为矢量表示表示为角度差f为特征子频的频率,d为阵元的笛卡尔坐标,则Φ可表示为:δ为x阵元特征子频的相位;化简可得44所述相位求差是使得minΦ则可得特征子频的相位差Δd为阵元坐标数值差。6.如权利要求5所述的基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,所述的信号入射的方位角的操作为:由欧拉公式可知ejδ=cosδ+jsinδ,进而将Rinv元素转化为δ表达;通过vθ与δ的运算关系,将特征子频的相位差转化为信号入射角度。7.如权利要求1所述的基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法,其特征在于,所述的DOA估计是根据麦克风阵元组合以及特征子频矢量,对信号入射的角度进行估计,并将估计结果依据数据帧的有效性进行最优加权,从而得到目的声源的DOA估计。

百度查询: 西安云脉智能技术有限公司 一种基于MVDR协方差矩阵元素自适应相角转换的DOA估计方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。