首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种考虑波动性与周期性的风电功率超短期预测方法 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)

摘要:本发明公开了一种考虑波动性与周期性的风电功率超短期预测方法,属于可再生能源预测技术领域,包括以下步骤:S1、建立风电数据挖掘方法得到数据波动组成和周期组成;S2、通过深度学习方法从原始风电数据中提取融合特征;S3、通过集成神经网络模型基于融合特征和波动、周期组成做出预测;S4、通过S1所得的波动组成和周期组成、S2的融合特征和S3的集成神经网络确定最终的风电功率超短期预测方法。本发明采用上述的一种考虑波动性与周期性的风电功率超短期预测方法,将深度学习理论引进风电功率预测中,研究数据挖掘方法以及深度学习方法在超短时风电功率预测问题中的应用,提高电网稳定性和供电可靠性,对多元化能源系统的发展具有重要意义。

主权项:1.一种考虑波动性与周期性的风电功率超短期预测方法,其特征在于,包括以下步骤:S1、建立风电数据挖掘方法得到数据波动组成和周期组成;S2、通过深度学习方法从原始风电数据中提取融合特征;S3、通过集成神经网络模型基于融合特征和波动、周期组成做出预测;S4、通过S1所得的波动组成和周期组成、S2的融合特征和S3的集成神经网络得到最终的风电功率超短期预测方法。

全文数据:

权利要求:

百度查询: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种考虑波动性与周期性的风电功率超短期预测方法

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。