买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:哈尔滨工业大学
摘要:本发明涉及一种边端环境下面向能耗优化的多设备多神经网络应用拆分推理方法,属于计算机服务技术领域。该方法旨在解决工业互联网中深度神经网络模型在端设备上推理的能耗问题。通过对边端环境和DNN模型精细化建模,结合遗传算法和贪心策略,生成DNN分区与卸载策略和资源分配方案,在成本和最大端到端延迟约束下实现最小化端设备功耗的目标。该方法支持大规模数量的端设备,且每个端设备上可部署多个不同复杂DNN模型,通过精细化的资源分配和任务调度,能够在成本约束下充分利用环境中的多个边缘服务器。本发明为工业互联网领域的DNN模型推理提供了一种能耗优化的解决方案,推动IIoT系统的智能化发展。
主权项:1.一种边端环境下面向能耗优化的多设备多神经网络应用拆分推理方法,其特征在于,包括以下步骤:步骤一、分布式DNN应用推理建模;步骤二、多边多端计算环境数据收集;步骤三、DNN模型推理数据分析与执行延迟预测;步骤四、面向能耗生成DNN分区卸载策略。
全文数据:
权利要求:
百度查询: 哈尔滨工业大学 边端环境下面向能耗优化的多设备多神经网络应用拆分推理方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。