买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:广东电网有限责任公司;广东电网有限责任公司湛江供电局
摘要:本发明涉及一种多目标野花算法的动态环境经济调度方法,包括以下步骤:S1.以燃料费用最小和污染排放最小为目标函数,考虑等式约束和不等式约束,建立电力系统动态环境经济调度模型;S2.结合动态环境经济调度模型,初始化种群和算法迭代数据,计算粒子适应度;S3.执行约束支配策略选出非劣解集;S4.执行野花算法更新种群,具体包括:1)执行正态扩散和趋养进化机制;2)执行配对繁殖机制;3)执行染色体突变机制;更新非劣解集;S5.终止条件:若非劣解个数达到预定值,执行密集度机制对非劣解进行升级维护;否则,转S4;S6.执行模糊决策选取最优折中解。
主权项:1.一种多目标野花算法的动态环境经济调度方法,其特征在于,包括以下步骤:S1.以燃料费用最小和污染排放最小为目标函数,考虑等式约束和不等式约束,建立电力系统动态环境经济调度模型;S2.结合动态环境经济调度模型,初始化种群和算法迭代数据,计算粒子适应度;S3.执行约束支配策略选出非劣解集;S4.执行野花算法更新种群,具体包括:1执行正态扩散和趋养进化机制;2执行配对繁殖机制;3执行染色体突变机制;更新非劣解集;S5.终止条件:若非劣解个数达到预定值,执行密集度机制对非劣解进行升级维护;否则,转S4;S6.执行模糊决策选取最优折中解;在所述步骤S1中,电力系统动态环境经济调度模型包括目标函数和约束条件,目标函数为燃料费用和污染排放,约束条件包括等式约束和不等式约束;以燃料费用最小为目标函数的具体形式为: 其中,n为发电机组总数;Pi为第i台发电机的有功出力;ai、bi、ci为第i台发电机的燃料费用系数;考虑阀点效应,燃料费用函数可表示为: 以污染排放最小为目标函数的具体形式为: 其中,αi、βi、γi为第i台发电机的污染气体排放系数;等式约束为:1功率平衡约束: 其中,PD为总负荷需求,PL为传输网损;系统传输网损可用下式表示: 其中,Bij、Boi、Boo为发电机的网损系数;2不等式约束为:机组运行约束:Pimin≤Pi≤Pimax其中,Pimin为机组i的有功出力下限,Pimax为机组i的有功出力上限;在所述步骤S2中,结合动态环境经济调度模型,初始化种群和算法迭代数据具体为:设定种群规模最大值和初始总群Nmax、N,控制变量数D,D为维数,为每台发电机的有功出力值,非劣解集最大粒子数MaxIter;在D维问题的收索空间内随机初始化种群X,其中,第i个个体为Xi=[Xi1,Xi2,...XiD],i=1、2......N;初始化变量取值的下限和上限Xmin、Xmax,父代粒子产生的后代个数的最小值和最大值Smin、Smax,标准差初始值和最终值σinit、σfinal,富养半径R;种群X的初始化过程为:采用混沌Logistic方程产生混沌变量xi+1=λ·xi·1-xi式中,xi∈[o,1],xi≠0.25、0.5、0.75,λ为控制参数,取值0~4,当完全处于混沌状态时,λ=4;取任意初始点x0,可得[0,1]上的遍历的点集xi,i=1、2......N;将得到的混沌变量xi转化为初始种群Xi=Xmin+αXmax-Xmin1-xixi式中,α=4为混沌吸引子。
全文数据:一种多目标野花算法的动态环境经济调度方法技术领域[0001]本发明涉及电力系统经济调度领域,更具体地,涉及一种多目标野花算法的动态环境经济调度方法。背景技术[0002]随着环境污染问题的日益凸显,各火电厂在追求发电效益的同时更多地考虑了废气的减排,并纷纷制定了污染气体排放限制法规。电力调度也由传统的单目标经济调度更多地转向了兼顾环境和经济的调度。[0003]电力系统动态环境经济调度对电力系统的连续、安全、可靠运行和减低对环境的污染有着极其重要的意义。作为电力系统的一个多目标优化问题,它是考虑了随机性影响因素情况下的不确定性动态多目标优化调度,更符合实际要求,操作难度也更高。[0004]随着对电力系统调度方法研究的深入,出现了多种解决多目标动态环境经济调度的方法,如:权系数法、价格惩罚因子法、模糊满意度法、NSGA-II算法等,这些方法复杂,需要设置的参数多,效率低,不便于操作。[0005]因此,开发一种能够适应多目标动态环境经济调度问题,并且高效、快捷、简单的方法一直是个技术难题。发明内容[0006]本发明的目的在于,提供一种能对环境排放函数和燃料费用函数同时进行优化的,具有强大全局收敛能力的动态环境经济调度方法。[0007]为实现以上发明目的,采用的技术方案是:[0008]—种多目标野花算法的动态环境经济调度方法,包括以下步骤:[0009]SI.以燃料费用最小和污染排放最小为目标函数,考虑等式约束和不等式约束,建立电力系统动态环境经济调度模型;[0010]S2.结合动态环境经济调度模型,初始化种群和算法迭代数据,计算粒子适应度;[0011]S3.执行约束支配策略选出非劣解集;[0012]S4.执行野花算法更新种群,具体包括:[0013]1执行正态扩散和趋养进化机制;[0014]2执行配对繁殖机制;[0015]3执行染色体突变机制;[0016]更新非劣解集;[0017]S5.终止条件:若非劣解个数达到预定值,执行密集度机制对非劣解进行升级维护;否则,转S4;[0018]S6.执行模糊决策选取最优折中解。[0019]优选地,在所述步骤Sl中,电力系统动态环境经济调度模型包括目标函数和约束条件,目标函数为燃料费用和污染排放,约束条件包括等式约束和不等式约束;[0020]以燃料费用最小为目标函数的具体形式为:[0021][0022]其中,η为发电机组总数;P1为第i台发电机的有功出力为第i台发电机的燃料费用系数;[0023]考虑阀点效应,燃料费用函数可表示为:[0024][0025]以污染排放最小为目标函数的具体形式为:[0026][0027]其中,alN、blN、clN为第i台发电机的污染气体排放系数;[0028]等式约束为:[0029]1功率平衡约束:[0030][0031]其中,Pd为总负荷需求,a为传输网损;[0032]系统传输网损可用下式表示:[0033][0034]其中,B1」、Bcil、B。。为发电机的网损系数;[0035]2不等式约束为:[0036]机组运行约束:[0037][0038]其中,Pimin为机组i的有功出力下限,Pimax为机组i的有功出力上限。[0039]优选地,在所述步骤S2中,结合动态环境经济调度模型,初始化种群和算法迭代数据具体为:[0040]设定种群规模最大值和初始总群Nmax、N,控制变量数D,D为维数,为每台发电机的有功出力值,非劣解集最大粒子数MaxIter;在D维问题的收索空间内随机初始化种群X,其中,第i个个体为Xi=[Xu,Xi2,...XiD],i=l、2……N;初始化变量取值的下限和上限Xmin、Xmx,父代粒子产生的后代个数的最小值和最大值Smin、Smax,标准差初始值和最终值〇init、Ofinal,富养半径R;[0041]种群X的初始化过程为:采用混沌Logistic方程产生混沌变量[0042]χι+ι=λ·Xi·I-Xi[0043]式中,Xie[0,1],Xi乒〇.25、0.5、0.75,λ为控制参数,取值〇〜4,当完全处于混沌状态时,λ=4。取任意初始点XQ,可得[0,1]上的遍历的点集^,丨=1、2......Ν;[0044]将得到的混沌变量Xi转化为初始种群[0045]Xi=Xmin+aX腹-XminhiXi[0046]式中,a=4为混纯吸引子。[0047]优选地,在所述步骤S3中,执行约束支配策略选出非劣解集具体为:[0048]对于可行域内的两个粒子a、b,若斯《S双的,访=1,2“且名α乂咏3=1,L时,称粒子a支配粒子b即,ab,其中,m为目标个数;这时,粒子a为非劣解或Pareto解,所有非劣解组成的解集为非劣解集或Pareto解集;非劣解内粒子的个数上限为Maxlter。[0049]优选地,在所述步骤S4中,执行野花算法更新种群具体为:[0050]分步骤1中,执行正态扩散和趋养进化机制具体为:[0051]正态扩散繁殖机制中,WFO算法根据野花个体适应度来定义个体品质的好坏,进而决定其能繁殖的后代的个数,具体为:[0052][0053]式中,Qi为野花个体i能产生的后代数;Fi、Fmax、Fmin分别为野花个体i的适应度值、当前种群中的最大和最小适应度值;Smin、Smax分别是父代粒子产生的后代个数的最小值和最大值;round为取整函数;[0054]根据得出的后代数量,WFO算法通过高斯分布在父代粒子周围空间进行随机扩散,产生后代个体;如下式:[0055][0056]式中,]^1'111£«、]^1'分别为最大迭代次数和当前迭代次数;〇^1;、〇|^1、〇11^分别为标准差的初始值、最终值和当前值;η为非线性调和因子,一般取值η=3;[0057]根据扩散值,可得到父代野花粒子的一个后代粒子为:[0058]Xi+l=Xi+〇iter[0059]式中,X1+1即为—个子代粒子,该粒子被加到种群中,成为种群的一部分;[0060]趋养进化机制中,子代粒子会朝着种群中营养富裕的地区繁殖,且也有一定概率受到其他因素影响而不朝富养区繁殖,以正态扩散机制取而代之;[0061]定义种群中的全局最优粒子XgbestS富养区,以富养区为中心,半径为R的范围内的粒子会被吸引,也有可能不被吸引;设置一个阈值P来定义子代粒子趋养进化的可能性,设置一个随机数1,若1Ρ,则子代趋养繁殖,否则,按正态扩散繁殖,具体如下:[0062],按照正态扩散机制繁殖后代粒子;[0063],有:[0064][0065]式中,r为[0,1]内的随机数:为第k次迭代时粒子i的第d维变量的概率值;R为富养半径半径,R的取值和具体问题有关;[0066]当父代繁殖达到预定的后代数,种群规模大于Nmax时,父代及子代野花按照适应度从高到底的顺序,去除适应度排在前Nmax个的个体作为下一代的父代,然后进入配对繁殖机制;[0067]分步骤2中,执行配对繁殖机制具体为:[0068]1对种群中的所有个体进行随机不重复配对;[0069]⑵若粒子X⑴和Xj被被配对,则X⑴的繁殖公式为:[0070]X'i,d=π·Xi,d+l~ri·Xj,d[0071]Xj的繁殖公式为:[0072][0073]其中,de1,D^1,^为[0,1]上的均匀分布随机数3丨,1和乂」,1分别为粒子1和j的第d维;X’(i,d和X’(j,d分别为配对繁殖过后得到的新子代;[0074]若X’⑴优于其父代Xi,则X⑴—X’⑴;否则,保留原父代粒子X⑴的值不变;[0075]3重复步骤⑴和步骤⑵N2次;[0076]分步骤3中,执行染色体突变机制具体为:[0077]1对种群个体的每一维进行归一化处理,公式如下:[0078][0079]其中,ieα,ΝJel,D;xjmin和Xjmax分别为第j维控制变量的上、下限;k为当前代数;[0080]⑵选中一个父代个体粒子X1,对其执行突变机制,公式如下[0081]Y—Xi4[0082]Xi,d—ΧΜ+1[0083]Xi,D—Y[0084]式中,i=l、2‘"Nmax;Xi,d和Xi,d+i分别为粒子Xi的第d维和第d+1维,d=l、2‘"D;[0085]3对Xi进行反归一化,得到优化后的解,公式如下:[0086][0087]式中,X’(i,j为突变后得到的新子代;Xjmir^PXjmax分别为第j维控制变量的上、下限;[0088]若X’(i,j优于其父代Xi,j,则Xi,j—X’(i,j;否则,保留原父代粒子Xi,j的值不变;[0089]更新种群后,执行步骤S4,将新筛选出的非劣解加紧非劣解集中,更新非劣解集。[0090]优选地,在所述步骤S5中,执行密集度机制对非劣解进行升级维护具体为:[0091]密集度机制为:[0092][0093]式中,0为邻域中心;fiA,fiB,fi⑹和fi⑹分别为粒子A、B、C和领域中心0的第i个目标函数;[0094]保留密集度大的MaxIter个个体。[0095]优选地,在所述步骤S6中,执行模糊决策选取最优折中解具体为:[0096]运用隶属度函数来评价每一个决策变量的满意度,对于Pareto前沿中的每一个非劣解k,隶属度函数表示为:[0097][0098]式中分别为第i个目标函数的最大最小值;[0099][0100]显然,当FDMiPk=0时是完全不满意的;当FDMiPk=1时是完全满意的;进行归一化处理后,对每个非劣解k的满意度评价如下:[0101][0102]非劣解集中满意度最大的解即环境经济调度问题的最优折中解。[0103]与现有技术相比,本发明的有益效果是:[0104]1本发明提出的动态环境经济调度方法高效可靠,操作简单,初始参数少,鲁棒性、遍历性强,运行效率高;[0105]2本发明提出的动态环境经济调度方法所使用的混沌初始化使得初始总群遍历性强,包含信息多;[0106]3正态扩散进化机制自适应能力强,鲁棒性好,结合趋养进化机制,使得粒子能够稳定地朝向最优解进化,目的性强,收敛速度快;[0107]⑷配对繁殖机制充分利用了体间的信息,促进个体进行信息交换和更新,结合染色体突变机制,使得总群能及时跳出局部最优,加快后期收敛速度,寻找潜在最优解,及大地提高了算法的搜索性能。[0108]5密集度机制的引入提高了非劣解的质量和提高了算法运行速度,使得非劣解前沿更加均匀,多样性强。附图说明[0109]图1为方法的流程示意图。[0110]图2为用本发明方法所得出的环境经济调度问题的最优非劣解集示意图。具体实施方式[0111]附图仅用于示例性说明,不能理解为对本专利的限制;[0112]以下结合附图和实施例对本发明做进一步的阐述。[0113]实施例1[0114]—个10机电力系统的动态环境经济调度,系统模型考虑阀点效应、网络损耗和爬坡约束等,调度周期为24小时,分为24个时段,每个时段长为1小时。[0115]如图1所为本发明的一种多目标野花算法的动态环境经济调度方法在10机组实际电力系统实例中的流程图,包括以下步骤:[0116]步骤1,结合10机组实际电力系统,以燃料费用最小和污染排放最小为目标函数,并考虑阀点效应、网络损耗和爬坡约束,建立电力系统经济调度模型,具体形式为:[0117]以燃料费用最小为目标函数的具体形式为:[0118][0119]其中,η为发电机组总数;P1为第i台发电机的有功出力为第i台发电机的燃料费用系数。[0120]考虑阀点效应,燃料费用函数可表示为:[0121][0122]以污染排放最小为目标函数的具体形式为:[0123][0124]其中,alN、blN、clN为第i台发电机的污染气体排放系数。[0125]等式约束为:[0126]功率平衡约束:[0127][0128]其中,Pd为总负荷需求,a为传输网损。[0129]系统传输网损可用下式表示:[0130][0131]其中,81^。1几。为发电机的网损系数。[0132]不等式约束为:[0133]机组运行约束:[0134][0135]其中,Pimin为机组i的有功出力下限,Pimax为机组i的有功出力上限。[0136]步骤2,结合系统模型初始化和算法数据,计算种群适应度。[0137]设定种群规模最大值和初始总群Nmax=100、N=80,控制变量数D=IO即维数,为每台发电机的有功出力值),非劣解集最大粒子数MaxIter=100;在D维问题的收索空间内随机初始化种群X,其中,第i个个体为Xi=[Xu,Xi2,...XiD],i=l、2……N;初始化变量取值的下限和上限Un、Xmax,父代粒子产生的后代个数的最小值和最大值Smin=2、Smax=5,标准差初始值和最终值Oinit=I、Ofinal=O·0001,富养半径R=O·05[0138]种群X的初始化过程为:采用混沌Logistic方程产生混沌变量[0139][0140]式中,Xie[0,1],Xi乒〇.25、0.5、0.75,λ为控制参数,取值〇〜4,当完全处于混沌状态时,λ=4。取任意初始点xq,可得[0,1]上的遍历的点集^,丨=1、2......Ν。[0141]将得到的混沌变量XlR化为初始种群[0142][0143]式中,α=4为混沌吸引子。[0144]步骤3,执行约束支配策略选出初代非劣解集。[0145]对于可行域内的两个粒子a、b,若且[0146].时,将粒子a存进非劣解集。[0147]步骤4,执行野花算法更新种群。[0148]分步骤4-1中,执行正态扩散和趋养进化机制具体为:[0149]正态扩散繁殖机制中,WFO算法根据野花个体适应度来定义个体品质的好坏,进而决定其能繁殖的后代的个数,具体为:[0150][0151]式中,Qi为野花个体i能产生的后代数;Fi、Fmax、Fmin分别为野花个体i的适应度值、当前种群中的最大和最小适应度值;Smin、Smax分别是父代粒子产生的后代个数的最小值和最大值;round为取整函数。[0152]根据得出的后代数量,WFO算法通过高斯分布在父代粒子周围空间进行随机扩散,产生后代个体。如下式:[0153][0154]式中,]^1'111£«、]^1'分别为最大迭代次数和当前迭代次数;〇^1;、〇_£11、〇^^分别为标准差的初始值、最终值和当前值;η为非线性调和因子,一般取值η=3。[0155]根据扩散值,可得到父代野花粒子的一个后代粒子为:[0156][0157]式中,Χ1+1即为—个子代粒子,该粒子被加到种群中,成为种群的一部分。[0158]趋养进化机制中,子代粒子会朝着种群中营养富裕的地区繁殖,且也有一定概率受到其他因素影响而不朝富养区繁殖,以正态扩散机制取而代之。[0159]定义种群中的全局最优粒子XgbestS富养区,以富养区为中心,半径为R的范围内的粒子会被吸引,也有可能不被吸引。设置一个阈值P来定义子代粒子趋养进化的可能性,设置一个随机数1,若1Ρ,则子代趋养繁殖,否则,按正态扩散繁殖,具体如下:[0160],按照正态扩散机制繁殖后代粒子;[0161],有:[0162][0163]式中,r为[0,1]内的随机数为第k次迭代时粒子i的第d维变量的概率值;R为富养半径半径,R的取值和具体问题有关。[0164]当父代繁殖达到预定的后代数,种群规模大于Nmax时,父代及子代野花按照适应度从高到底的顺序,去除适应度排在前Nmax个的个体作为下一代的父代,然后进入配对繁殖机制。[0165]分步骤4-2中,执行配对繁殖机制具体为:[0166]1对种群中的所有个体进行随机不重复配对;[0167]⑵若粒子X⑴和Xj被被配对,则X⑴的繁殖公式为:[0168][0169]Xj的繁殖公式为:[0170][0171]其中,de1,D^1,^为[0,1]上的均匀分布随机数31,1和乂」,1分别为粒子1和j的第d维;X’(i,d和X’(j,d分别为配对繁殖过后得到的新子代;[0172]若X’⑴优于其父代Xi,则X⑴—X’⑴;否则,保留原父代粒子X⑴的值不变。[0173]⑶重复步骤⑴和步骤⑵N2次;[0174]分步骤4-3中,执行染色体突变机制具体为:[0175]1对种群个体的每一维进行归一化处理,公式如下:[0176][0177]其中,ieα,Ν,jel,D;xjmin和Xjmax分别为第j维控制变量的上、下限;k为当前代数。[0178]2选中一个父代个体粒子X1,对其执行突变机制,公式如下[0179][0180][0181][0182]式中,i=l、2‘"Nmax;Xi,d和Xi,d+i分别为粒子Xi的第d维和第d+Ι维,d=l、2‘"D。[0183]⑺对X1进行反归一化,得到优化后的解,公式如下:[0184][0185]式中,X’(i,j为突变后得到的新子代;Xjmin和Xjmax分别为第j维控制变量的上、下限。[0186]若X’(i,j优于其父代Xi,j,则Xi,j—X’(i,j;否贝lj,保留原父代粒子Xi,j的值不变。[0187]步骤6,执行模糊决策选取最优折中解。[0188]运用隶属度函数来评价每一个决策变量的满意度,对于Pareto前沿中的每一个非劣解k,隶属度函数表示为:[0189][0190]式中,分别为第i个目标函数的最大最小值。[0191][0192]显然,当FDMiPk=0时是完全不满意的;当FDMiPk=1时是完全满意的;进行归一化处理后,对每个非劣解k的满意度评价如下:[0193][0194]非劣解集中满意度最大的解即动态环境经济调度问题的最优折中解。[0195]图2为用本发明方法所得出的环境经济调度问题的最优非劣解集,可看出解集的密集度跟多样性均为良好。表1为本发明所提方法得出的最优燃料费用和最小污染排放值,表2给出了本发明方法所得的调度方案,可看出,本发明方法优化所得的结果符合实际生产要求,显示了对电力系统动态环境经济调度问题的实用性。[0196]表1[0198]表2[0200]显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
权利要求:1.一种多目标野花算法的动态环境经济调度方法,其特征在于,包括以下步骤:51.以燃料费用最小和污染排放最小为目标函数,考虑等式约束和不等式约束,建立电力系统动态环境经济调度模型;52.结合动态环境经济调度模型,初始化种群和算法迭代数据,计算粒子适应度;53.执行约束支配策略选出非劣解集;54.执行野花算法更新种群,具体包括:1执行正态扩散和趋养进化机制;2执行配对繁殖机制;3执行染色体突变机制;更新非劣解集;55.终止条件:若非劣解个数达到预定值,执行密集度机制对非劣解进行升级维护;否贝丨J,转S4;56.执行模糊决策选取最优折中解。2.根据权利要求1所述的多目标野花算法的动态环境经济调度方法,其特征在于:在所述步骤SI中,电力系统动态环境经济调度模型包括目标函数和约束条件,目标函数为燃料费用和污染排放,约束条件包括等式约束和不等式约束;以燃料费用最小为目标函数的具体形式为:其中,η为发电机组总数必为第i台发电机的有功出力;ai为第i台发电机的燃料费用系数;考虑阀点效应,燃料费用函数可表示为:以污染排放最小为目标函数的具体形式为:其中,aiN、biN、ciN为第i台发电机的污染气体排放系数;等式约束为:1功率平衡约束:其中,Pd为总负荷需求,Pl为传输网损;系统传输网损可用下式表示:其中,Bij、Bcii、B。。为发电机的网损系数;2不等式约束为:机组运行约束:其中,Pimin为机组i的有功出力下限,Pimax为机组i的有功出力上限。3.根据权利要求1所述的多目标野花算法的动态环境经济调度方法,其特征在于:在所述步骤S2中,结合动态环境经济调度模型,初始化种群和算法迭代数据具体为:设定种群规模最大值和初始总群Nmax、N,控制变量数D,D为维数,为每台发电机的有功出力值,非劣解集最大粒子数MaxIter;在D维问题的收索空间内随机初始化种群X,其中,第i个个体为Xi=[Xu,Xi2,...XiD],i=l、2……N;初始化变量取值的下限和上限Xmin、Xmax,父代粒子产生的后代个数的最小值和最大值Smin、Smax,标准差初始值和最终值〇init、〇final,富养半径R;种群X的初始化过程为:采用混沌Logistic方程产生混沌变量Χί+ι=λ·Xi·I-Xi式中,Xie[〇,1],Xi乒〇.25、0.5、0.75,λ为控制参数,取值〇〜4,当完全处于混沌状态时,λ=4。取任意初始点xq,可得[0,1]上的遍历的点集^,丨=1、2......Ν;将得到的混沌变量以转化为初始种群Xi—Xmin-^QXmax-XminI-XiXi式中,α=4为混沌吸引子。4.根据权利要求1所述的多目标野花算法的动态环境经济调度方法,其特征在于:在所述步骤S3中,执行约束支配策略选出非劣解集具体为:对于可行域内的两个粒子a、b,若:!且af\b,3=1,2…时,称粒子a支配粒子bS卩,ab,其中,m为目标个数;这时,粒子a为非劣解或Pareto解,所有非劣解组成的解集为非劣解集或Pareto解集;非劣解内粒子的个数上限为MaxIter05.根据权利要求1所述的多目标野花算法的动态环境经济调度方法,其特征在于:在所述步骤S4中,执行野花算法更新种群具体为:分步骤1中,执行正态扩散和趋养进化机制具体为:正态扩散繁殖机制中,WFO算法根据野花个体适应度来定义个体品质的好坏,进而决定其能繁殖的后代的个数,具体为:式中,Q1为野花个体i能产生的后代数;?1__分别为野花个体浦适应度值、当前种群中的最大和最小适应度值;Smin、Smax分别是父代粒子产生的后代个数的最小值和最大值;round为取整函数;根据得出的后代数量,WFO算法通过高斯分布在父代粒子周围空间进行随机扩散,产生后代个体;如下式:式中,Itermax、Iter分别为最大迭代次数和当前迭代次数;〇init、ofinal、Oiter分别为标准差的初始值、最终值和当前值;η为非线性调和因子,一般取值η=3;根据扩散值,可得到父代野花粒子的一个后代粒子为:Xi+Ι—Xi+〇iter式中,χ1+1即为的一个子代粒子,该粒子被加到种群中,成为种群的一部分;趋养进化机制中,子代粒子会朝着种群中营养富裕的地区繁殖,且也有一定概率受到其他因素影响而不朝富养区繁殖,以正态扩散机制取而代之;定义种群中的全局最优粒子Xgbest为富养区,以富养区为中心,半径为R的范围内的粒子会被吸引,也有可能不被吸引;设置一个阈值P来定义子代粒子趋养进化的可能性,设置一个随机数1,若IΡ,则子代趋养繁殖,否则,按正态扩散繁殖,具体如下:当时,按照正态扩散机制繁殖后代粒子;当时,有:式中,r为[0,1]内的随机数:,为第k次迭代时粒子i的第d维变量的概率值;R为富养半径半径,R的取值和具体问题有关;当父代繁殖达到预定的后代数,种群规模大于Nmax时,父代及子代野花按照适应度从高到底的顺序,去除适应度排在前Nmax个的个体作为下一代的父代,然后进入配对繁殖机制;分步骤2中,执行配对繁殖机制具体为:1对种群中的所有个体进行随机不重复配对;⑵若粒子X⑴和Xj被被配对,则X⑴的繁殖公式为:X'i,d=π·Xi,d+l-ri·Xj,dXj的繁殖公式为:X'j,d=ri·Xj,d+l-r2·Xi,d其中,deI,D;ri,r2为[0,I]上的均匀分布随机数;Xi,d和Xj,d分别为粒子i和j的第d维;X’(i,d和X’(j,d分别为配对繁殖过后得到的新子代;若X’⑴优于其父代X⑴,则X⑴—X’⑴;否则,保留原父代粒子X⑴的值不变;⑶重复步骤⑴和步骤⑵N2次;分步骤3中,执行染色体突变机制具体为:1对种群个体的每一维进行归一化处理,公式如下:其中,iel,NJel,D;Xjmin和Xjmax分别为第j维控制变量的上、下限;k为当前代数;⑵选中一个父代个体粒子X1,对其执行突变机制,公式如下Y—Xi,iXi.d^Xi,d+1Xi,D—Y式中,i=l、2"_Nmax;Xi,d和Xi,d+1分别为粒子Xi的第d维和第d+1维,d=l、2‘"D;⑶对X1进行反归一化,得到优化后的解,公式如下:X,(i,j=Xi,j*Xjmax-Xjmin^Xjmin式中,X’(i,j为突变后得到的新子代和X^x分别为第j维控制变量的上、下限;若X’(i,j优于其父代Xi,j,则Xi,j—X’(i,j;否则,保留原父代粒子Xi,j的值不变;更新种群后,执行步骤S4,将新筛选出的非劣解加紧非劣解集中,更新非劣解集。6.根据权利要求1所述的多目标野花算法的动态环境经济调度方法,其特征在于:在所述步骤S5中,执行密集度机制对非劣解进行升级维护具体为:密集度机制为:t=1式中,〇为邻域中心;fi㈧,fi⑻,fi⑹和fi⑼分别为粒子A、B、C和领域中心O的第i个目标函数;保留密集度大的MaxIter个个体。7.根据权利要求1所述的多目标野花算法的动态环境经济调度方法,其特征在于:在所述步骤S6中,执行模糊决策选取最优折中解具体为:运用隶属度函数来评价每一个决策变量的满意度,对于Pareto前沿中的每一个非劣解k,隶属度函数表示为:式中,1分别为第i个目标函数的最大最小值;显然,当FDMiPk=0时是完全不满意的;当FDMiPk=1时是完全满意的;进行归一化处理后,对每个非劣解k的满意度评价如下:非劣解集中满意度最大的解即环境经济调度问题的最优折中解。
百度查询: 广东电网有限责任公司 广东电网有限责任公司湛江供电局 一种多目标野花算法的动态环境经济调度方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。