买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:西南交通大学
摘要:本发明属于加速寿命试验技术领域,具体是涉及Weibull分布综合应力恒加试验中参数的简化MLE方法。本发明针对单应力ALT的试验周期较长和Weibull分布参数的最大似然估计难以求解问题,给出了Weibull分布综合应力恒加试验数据的简化MLE方法,并通过对航天电连接器综合应力恒加试验的MonteCarlo仿真失效时间进行统计分析,验证所给Weibull分布综合应力恒加试验数据的简化MLE方法与可靠性评估的可行性和有效性。
主权项:1.Weibull分布综合应力恒加试验中参数的简化MLE方法,该方法用于加速寿命试验中,Weibull分布参数的极大似然估计;其特征在于,包括以下步骤:a、采用热应力和非热应力同时作为加速应力进行试验,则建立产品寿命特征与试验应力间关系的模型为: 其中,η为特征寿命;T为热应力,S为非热应力;A、B均为待定常数,E为激活能,K=8.617×10-5eV℃为波耳兹曼常数;并设定:1在各应力水平组合Ti,Sj下,产品的寿命tij服从双参数Weibull分布Wmij,ηij,即tij~Wmij,ηij,i=0,1,2,…,k,j=0,1,2,…,l,其累积分布函数为: 其中,mij0为形状参数,ηij0为特征寿命或尺度参数;设定寿命tij~Wmij,ηij,则对数服从极值分布Gμij,σij,即yij~Gμij,σij,其累积分布函数为: 其中,μij=lnηij为极值分布Gμij,σij的位置参数,σij=1mij为极值分布Gμij,σij的尺度参数;2在各应力水平组合Ti,Sj下,产品的失效机理保持不变,即所有应力水平组合下Weibull分布的形状参数mij相同:这等价于极值分布Gμij,σij的尺度参数σij相同:3在各应力水平组合Ti,Sj下,Weibull分布的特征寿命ηij与应力水平组合Ti,Sj间满足对数线性广义艾林加速模型: 其中,γ0=lnA,γ1=E103K和γ2=-B均为待估参数;φSj=lnSj均为转化应力水平,记b、根据步骤a设定的条件,对产品进行定时截尾综合应力恒加试验:设定试验总样本量为n,在应力水平组合Ti,Sj下,投入nij个样品进行定时截尾寿命试验,试验截止时间为τij,在[0,τij]内观测到rij个样品发生失效,失效时间依次为: 同时设定其余nij-rij个样品将在τij,∞内发生失效;c、获取样本数据的对数似然函数:根据产品的失效机理保持不变,和Weibull分布的概率密度函数: 可得应力水平组合Ti,Sj下样本数据的似然函数为: 从而应力水平组合Ti,Sj下样本数据的对数似然函数为: 可得所有应力水平组合下全部样本数据的对数似然函数为: 其中: d、获得全部样本数据的优化对数似然函数:定义非负整数a、b和c,即a,b,c0,由于 利用Qa,b,c可求得对数似然函数lnL的一阶偏导数令: 可得: 将9式代入8可得全部样本数据的优化对数似然函数为:lnL*=D0,0lnm+m-1Qe-mγ1D1,0+γ2D0,1-D0,0lnQ0,0,010e、获得Weibull分布尺度参数的极大似然估计:根据步骤d,获得公式10的一阶偏导数分别为: lnL*的二阶偏导数分别为: lnL*的二阶混合偏导数分别为: 通过令对数似然函数lnL*的一阶偏导数为零,然后再解方程组,即可获得m、γ1和γ2的极大似然估计值和然后再将和代入式9即可得γ0的极大似然估计值根据极大似然估计的不变性,即可得公式1的极大似然估计为: 在应力水平组合T0,S0下,Weibull分布尺度参数的极大似然估计为: 其中,可靠度为R的可靠寿命tR,00的极大似然估计为 可靠度R00t的极大似然估计值为 失效率λ00t的极大似然估计值为 平均寿命tE的极大似然估计值为
全文数据:WeibuII分布综合应力恒加试验中参数的简化MLE方法技术领域[0001]本发明属于加速寿命试验技术领域,具体是涉及Weibull分布综合应力恒加试验中参数的简化MLE方法。背景技术[0002]加速寿命试验Acceleratedlifetest,ALT是在保持失效机理不变的条件下,通过加大试验应力来加速产品失效的一种寿命试验方法;其目的是运用加速模型外推加速应力下的试验数据,对产品在正常应力水平下的各种可靠性指标进行统计推断。ALT可缩短试验周期、提高试验效率、降低试验成本,ALT技术的引入为解决高可靠度长寿命产品的寿命与可靠性评估提供了新途径。ALT分为恒定应力ALT简称恒加试验,CSALT,步进应力ALT简称步加试验,SSALT和序进应力ALT简称序加试验);ALT的研究主要集中在加速模型、ALT的优化设计和ALT数据的统计分析三个方面。ALT数据的统计分析方法主要有经典统计推断方法和贝叶斯Bayesian统计推断方法,其中经典统计推断方法中MLE方法应用最为广泛。目前,不少学者在ALT数据的统计分析方面方面已作了大量研究工作。[0003]NELSON1990最先对ALT进行了全面性研究,提出了Weibull分布、正态分布和对数正态分布下完全样本和截尾样本情形ALT数据的MLE方法和最小二乘估计方法,且给出模型参数的置信区间;WATKINS1994研究了Weibull分布下恒加试验的精简MLE理论,并采用所提出的精简MLE方法刻画了Weibull分布的尺度参数与试验应力间的对数线性关系,算例分析结果表明所提方法是有效可行的;WANG等2000采用MLE方法研究了恒加试验Weibul1分布对数线性模型的参数估计问题,提出了恒加试验Weibull分布对数线性模型参数的MLE方法,真实试验数据分析结果表明所给方法是有效可行的;王炳兴等2002提出了定数截尾恒加试验Weibull分布参数的渐进无偏估计及渐进置信区间估计的估计理论;WATKINS等2008提出了Weibull分布下定数截尾恒加试验的精简MLE理论,给出了与似然函数相关的Fisher信息矩阵的精确计算方法,算例分析表明所提精简MLE方法较传统MLE提高了计算效率且降低了参数MLE值的标准偏差;汤银才等2009提出了三参数Weibul1分布Bayesian估计的Laplace数值积分方法和Gibbs抽样模拟方法,模拟算例说明了所提方法的可行性和有效性;XU等2012研究了相依指数分布竞争失效情形下恒加试验的MLE方法,真实试验数据分析结果表明所提MLE方法是可行的;陈文华等2012在Weibull分布失效下,利用MLE理论以产品中位寿命MLE值渐进方差的均值和标准离差分别作为估计精度和稳定性的考核指标,提出了航天电连接器步加试验的模拟评价理论与方法,算例分析表明基于MLE理论的模拟评价方法具有可行性;武东等(2013研究了Weibull分布下步加试验的Bayesian估计方法,MonteCarlo仿真算例说明了所提Bayesian估计方法的有效性;ZHENG等(2013采用EM算法和最小二乘法对两参数广义指数分布逐步定数混合截尾恒加试验数据进行了统计分析研究,获得了参数的渐进无偏估计和用于构造参数置信区间的Fisher信息矩阵;张详坡2014研究了三参数Weibull分布竞争失效场合序加试验的MLE方法,实例分析结果表明MLE方法是正确可行的且具有很好的估计效果。这些研究基本上都集中在单应力ALT方面。[0004]然而,在单应力ALT中,为使产品在试验过程中失效机理保持不变,试验应力水平不宜过高,这样势必会造成试验周期较长;另一方面,运用传统的MLE法对Weibull分布的ALT数据进行统计分析时,参数估计往往解析困难、计算冗繁,通常需要借助数值计算方法。因此,有必要在单应力ALT数据统计分析方法的基础上,研究综合应力ALT数据的统计分析方法。发明内容[0005]本发明的目的,就是针对上述问题,以航天电连接器为研究对象,针对单应力ALT的试验周期较长和Weibull分布的最大似然估计难以求解问题,提出Weibull分布下综合应力恒加试验的优化MLE方法,并通过对航天电连接器综合应力恒加试验的MonteCarlo仿真失效时间进行统计分析,验证所提Weibull分布下综合应力恒加试验优化MLE方法的可行性和有效性。[0006]本发明的技术方案为:[0007]Weibul1分布综合应力恒加试验中参数的简化MLE方法,该方法用于加速寿命试验中,Weibull分布参数的极大似然估计;其特征在于,包括以下步骤:[0008]a、采用热应力温度和非热应力(如电压、电流、湿度、振动等)同时作为加速应力进行试验,则建立产品寿命特征与试验应力间关系的广义艾林Eyring模型为:[0009][0010]其中,η为特征寿命;τ为热应力(绝对温度),s为非热应力;a、b均为待定常数,E为激活能eV,K=8.617XlT5eV°C为波耳兹曼常数;_1]并设定:[0012]1在各应力水平组合Ti,Sj下,产品的寿命tij服从双参数Weibull分布Wnuj,rUj,BPtij〜Wmij,TUj,;[=0,1,2,’",1^,_]_=0,1,2,’",1,其累积分布函数为:[0013][0014]其中,mij0为形状参数,nij〇为特征寿命或尺度参数;[0015]设定寿命tij〜Wmij,riij,贝Ij对数服从极值分布Gyij,〇i:j,即yi:j〜Gyij,〇ij,其累积分布函数为:[0016][0017]其中,yij=InrUj为极值分布Gyij,Oij的位置参数,Oij=lmij为极值分布Gyij,〇ij的尺度参数;[0018]2在各应力水平组合TbSj下,产品的失效机理保持不变,即所有应力水平组合下Weibull分布的形状参数my相同:这等价于极值分布Gbylj的尺度参数〇ij相同:,i=0,l,2,"_,k,j=0,l,2,"_,l;[0019]⑶在各应力水平组合Ti,Sj下,Weibull分布的特征寿命nij与应力水平组合Ti,Sj间满足对数线性广义艾林加速模型:[0020][0021]其中,γ〇=1ηΑ,γι=Ε103Κ和γ2=-B均为待估参数;_ΦSj=InSj均为转化应力水平,记[0022]b、根据步骤a设定的条件,对产品进行定时截尾综合应力恒加试验:[0023]设定试验总样本量为η,在应力水平组合T1,Sj下,投入nu个样品进行定时截尾寿命试验,试验截止时间为在[0,τ^]内观测到个样品发生失效,失效时间依次为:[0024][0025]同时设定其余ruj-rij个样品将在Tij,〇〇内发生失效;[0026]c、获取样本数据的对数似然函数:[0027]根据产品的失效机理保持不变,和Weibul1分布的概率密度函数:[0028][0029]可得应力水平组合1^¾下样本数据的似然函数为:[0030][0031]从而应力水平组合TiSj下样本数据的对数似然函数为:[0032][0033]可得所有应力水平组合下全部样本数据的对数似然函数为:[0034][0035]其中:[0038]d、获得全部样本数据的优化对数似然函数:[0039]定义非负整数a、b和c,即a,b,c0,由于[0043]利用Qa,b,c可求得对数似然函数InL的一阶偏导数,令:[0044][0045]可得:[0046][0047]将⑼式代入⑻可得全部样本数据的优化对数似然函数为:[0048]lnL*=Do,olnm+m-1Qe-mγιϋι,ο+γ2Do,i-Do,olnQo,o,o10[0049]e、获得WeibulI分布尺度参数的极大似然估计:[0050]根据步骤d,获得公式10的一阶偏导数分别为:[0054]InL*的二阶偏导数分别为:[0058]InL*的二阶混合偏导数分别为:[0062]通过令对数似然函数Inf的一阶偏导数为零,然后再解方程组,即可获得πκγθΡγ2的极大似然估计值,然后再将和代入式9即可得γο的极大似然估计值;[0063]根据极大似然估计的不变性,即可得公式⑴的极大似然估计为:[0064][0065]在应力水平组合To,So下,Weibul1分布尺度参数的极大似然估计为:[0066][0067]其中[0068]可靠度为R的可靠寿命tR,K的极大似然估计为[0069][0070]可靠度Rmt的极大似然估计值为[0071][0072]失效率Amt的极大似然估计值为[0073][0074]平均寿命tE的极大似然估计值为[0075][0076]上述方案中,根据MLE理论,参数MLE值和的协方差矩阵为[0077][0078]式(12中:协方差矩阵Σ用Fisher信息矩阵F来估计,而Fisher信息矩阵F是对数似然函数InL的负二阶偏导数的数学期望,即[0080]当对数似然函数二阶偏导数的数学期望的精确分布难以确定时,Fisher信息阵F的元素可用对数似然函数InL的负二阶偏导数值来近似,其计算公式为[0091]可靠性统计模型参数的渐进置信区间:[0092]1特征寿命nm的置信区间[0093]根据MLE的渐进正态性,统计量,的分布可以采用正态分布)近似,即[0094][0095]其中,[0097]方差与协方差可通过Fisher信息矩阵F的逆矩阵,即协方差矩阵Σ得到。[0098]由此得到μοο的置信度为l-α的双侧置信线为[0099][0100]从而由μ〇=1ηηΧ得到的置信度为l-α的双侧置信线为[0101][0102]2形状参数m的置信区间[0103]根据MLE理论,统计量的分布亦可用正态分布近似,即[0104][0105]因此,在置信水平为l-α时,形状参数m的双侧置信线为[0106][0107]其中的方差I:是协方差矩阵Σ的元素,U1-U是标准正态分布的1-α2分位数。[0108]⑶加速模型系数γi的置信区间[0109]根据MLE理论,统计量的分布亦可用正态分布近似,即[0110][0111]给定置信水平l-α,对数线性加速模型系数γ,的双侧置信线为[0112][0113]其中,的方差由协方差矩阵Σ给出。[0114]本发明的方案中,与现有技术最直接的差异为,现有技术求解参数是通过令对数似然函数InL的4个一阶偏导数为零,然后采用Newton法解对数似然方程组求得参数的MLE值和A,这种直接求解对数似然方程组的方法,计算效率十分低下。[0115]本发明的有益效果为,通过对对数似然函数的优化,极大的提高了参数估计的效率,因此提高了加速寿命试验的效率,有利于产品的快速测试。附图说明[0116]图1为实施例在各应力水平组合下的Weibull分布直线;[0117]图2为实施例在正常应力水平组合下产品的可靠度曲线;具体实施方式[0118]下面结合附图和实施例进一步详细描述本发明的技术方案:[0119]实施例[0120]本例为仿真YllX系列航天电连接器的失效过程,以环境温度和振动为加速寿命试验的加速应力,并采用广义艾林Eyring模型为加速模型。有关YlIX系列航天电连接器加速试验的研究表明,在环境温度和振动应力综合作用下,YllX系列航天电连接器失效机理的改变点为(158°:,1.^2他),此即¥1^系列航天电连接器的最高应力水平组合点。另一方面,根据国标GJBlOlA—1997,YllX系列航天电连接器的正常应力水平组合可选取为85°C,0.06g2Hz。[0121]通过大量摸底试验数据的统计分析,以及参考现有参考文献在YllX系列航天电连接器加速试验与可靠性方面的研究,选取[0122][0123]作为广义艾林Byring—Weibull可靠性统计模型参数的真值。[0124]当加速应力水平数k=l=4时,采用均勾设计表U442来进行试验,当给定最高试验应力水平组合后,试验方案的设计变量为的和Φ2,即设计变量水平组合为I«若温度与振动应力的转化应力水平取为等间隔水平,BP[0127]则温度与振动应力均为4水平数时的均匀设计方案如表1所示:[0128]表1综合应力恒加试验均匀设计方案[0129][0130]若各应力水平组合下试验的截尾时间均为50h,则均匀设计方案下航天电连接器的MonteCarIo仿真失效时间如表2所示:[0131]表2均勾设计方案的MonteCarlo仿真失效时间[0132][0133]可靠性统计模型的检验[0134]表2列举的仿真失效时间是否满足可靠性统计模型的基本假设,需要进行检验。首先,Weibull分布的拟合优度检验和失效机理一致性的检验,可采用Weibull概率纸法:[0135]采用中位秩公式:[0136]Ftijh=h-0.3ruj+0.4,h=1,2,···,rij[0137]估计产品的失效概率Ftljh,并将各应力水平组合下的试验数据[tljh,Ftljh]画在同一张Weibull概率纸上,如图1所示。由图1容易发现,各应力水平组合下试验数据点的趋势均为直线,且数据点的趋势大致平行。因此可以认为在各温度与振动综合应力作用下,航天电连接器的MonteCarlo仿真失效时间均服从Weibull分布,且形状参数m保持不变,即失效机理具有一致性。[0138]Weibull分布的拟合优度检验亦可采用范•蒙特福特检验法,其检验结果如表3所示:[0139]表3Weibull分布的拟合优度检验结果[0140][0141]由表3的结果可知,范•蒙特福特统计量F值均介于F分布的0.05分位点F〇.Odf1,f2与0.95分位点Fo.95的力之间,这表明表2列举的航天电连接器的仿真失效时间均服从Weibull分布。[0142]其次,失效机理一致性的检验可采用巴特利特检验法;在显著性水平a=0.05下,巴特利特检验统计量的值B2C=2.5508,它小于卡方分布临界值X20.95,3=7.8147。因此可以接受失效机理一致性的原假设,即可以认为在各温度与振动应力水平组合下Weibull分布的形状参数相等。[0143]模型参数的MLE和渐进置信区间:[0144]采用本发明的优化MLE方法,并运用Newton算法来估计可靠性统计模型的未知参数,γ1、γ2和η!的初值为Newton方法迭代运算过程中,参数γl·、γ2和m,对数似然函数ΙηΐΛ以及InI^的所有一、二阶偏导数值的收敛过程如表4所示:[0145]表4Newton方法迭代运算过程[0146][0147]由表4的结果可知,经过7步迭代运算后,InI^的一阶偏导数和均收敛到零,且参数γ1、γ2和m收敛到稳定值,由此可得γ1、γ2和Π!的MLE值为[0148][0149]再将MLE值代入式⑼可得γο的MLE值为[0150][0151]从而可得加速模型的估计为[0152][0153]而采用传统MLE方法,Netwon算法经过39步迭代后,参数γ〇、γ1、γ2和m才能收敛到稳定值[0154]由此可得本发明的方法相对于传统方法极大的提高了效率。[0155]已知MLE值和后,根据式(13可获得与似然函数相关的Fisher信息矩阵[0156][0157]再由式(12可得与说的协方差矩阵[0158][0159]估计出协方差矩阵Σ后,根据第4部分介绍的渐进置信区间理论,可容易获得参数的渐进置信区间。在置信水平1-α=90%下,参数γ〇、γ1、γ2、m和正常应力水平组合下Weibul1分布特征寿命nox的MLE值,渐进置信区间如表5所示:[0160]表5模型参数的MLE和90%置信区间[0162]正常应力水平组合下可靠性指标的MLE:[0163]利用加速模型(15式可得正常应力水平组合下特征寿命nm的MLE值为[0164][0165]可靠度Rm⑴的MLE值为[0166][0167]失效率λοο⑴的MLE值为[0168][0169]可靠度为R的可靠寿命tR,ο。的MLE为[0170][0171]平均寿命tE的MLE值为[0172]tE=89.173h[0173]可靠度估计的可靠度曲线如图2所示。
权利要求:I.Weibu11分布综合应力恒加试验中参数的简化MLE方法,该方法用于加速寿命试验中,Weibull分布参数的极大似然估计;其特征在于,包括以下步骤:a、采用热应力和非热应力同时作为加速应力进行试验,则建立产品寿命特征与试验应力间关系的模型为:其中,η为特征寿命;T为热应力,S为非热应力;A、B均为待定常数,E为激活能,K=8.617XlT5eV°C为波耳兹曼常数;并设定:1在各应力水平组合Ti,Sj下,产品的寿命tij服从双参数Weibul1分布WHiij,IUj,即tij〜Wmij,iUj,i=0,l,2,H.,k,j=0,l,2,H.,l,其累积分布函数为:其中,mij0为形状参数,nij〇为特征寿命或尺度参数;设定寿命知〜^^仏阳彡肩对数服从极值分布Gyij,〇ij,g卩yij〜Gyij,〇ij,其累积分布函数为:其中,Pij=Innij为极值分布Gyij,Oij的位置参数,Oij=lmij为极值分布Gyij,Oij的尺度参数;2在各应力水平组合TllSj下,产品的失效机理保持不变,即所有应力水平组合下Weibull分布的形状参数HUj相同:;这等价于极值分布G^ij,〇ij的尺度参数Oij相同:,i=0,l,2,"_,k,j=0,l,2,"_,l;3在各应力水平组合Ti,Sj下,Weibull分布的特征寿命riij与应力水平组合Ti,Sj间满足对数线性广义艾林加速模型:其中,γo=lnA,Y1=EzlO3K和γ2=-Β均为待估参数,ΦSj=InSj均为转化应力水平,记b、根据步骤a设定的条件,对产品进行定时截尾综合应力恒加试验:设定试验总样本量为η,在应力水平组合T1,Sj下,投入Iilj个样品进行定时截尾寿命试验,试验截止时间为在[0,τ^]内观测到rij个样品发生失效,失效时间依次为:同时设定其余mj-rij个样品将在Tij,〇〇内发生失效;c、获取样本数据的对数似然函数:根据产品的失效机理保持不变,和Weibull分布的概率密度函数:可得应力水平组合T1,Sj下样本数据的似然函数为:从而应力水平组合T1,Sj下样本数据的对数似然函数为:可得所有应力水平组合下全部样本数据的对数似然函数为:其中:d、获得全部样本数据的优化对数似然函数:定义非负整数a、b和c,即a,b,c0,由于利用Qa,b,。可求得对数似然函数InL的一阶偏导数,令:可得:将⑼式代入⑻可得全部样本数据的优化对数似然函数为:lnL*=Do,olnm+m-1Qe-mγιϋι,ο+γ2Do,i-Do,olnQo,o,o10e、获得WeibulI分布尺度参数的极大似然估计:根据步骤d,获得公式10的一阶偏导数分别为:Inf的二阶偏导数分别为:Inf的二阶混合偏导数分别为:通过令对数似然函数Inf的一阶偏导数为零,然后再解方程组,即可获得m、γ:和γ2的极大似然估计值和I然后再将和代入式⑼即可得γ〇的极大似然估计值;根据极大似然估计的不变性,即可得公式1的极大似然估计为:在应力水平组合TQ,S〇下,Weibull分布尺度参数的极大似然估计为:其中:可靠度为R的可靠寿命tR,QQ的极大似然估计为可靠度Rqqt的极大似然估计值为失效率λ0t的极大似然估计值为平均寿命tE的极大似然估计值为
百度查询: 西南交通大学 Weibull分布综合应力恒加试验中参数的简化MLE方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。