买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
摘要:本申请提供一种基于贝叶斯最优传输的用户行为建模方法,包括:获取用户行为序列数据以及高斯混合模型的先验分布参数;利用所述先验分布参数对高斯混合模型进行初始化,并将所述用户行为序列数据输入至初始化后的高斯混合模型,利用EM算法求解获得用户兴趣表示;将所述用户兴趣表示输入至多层感知机,获得用户行为预测结果。本申请能够更灵活地对用户行为数据进行建模,并在辅助模型参数学习的同时加速了模型的训练过程,避免了过拟合或者模型退化的问题,从而提高模型的泛化能力和预测准确性,不仅可以更准确地学习用户行为模式,还可以减少噪声数据的影响,确保了模型的复杂度,使得模型能够有效地对长序列进行建模。
主权项:1.一种基于贝叶斯最优传输的用户行为建模方法,其特征在于,包括:获取用户行为序列数据以及高斯混合模型的先验分布参数;利用所述先验分布参数对高斯混合模型进行初始化,并将所述用户行为序列数据输入至初始化后的高斯混合模型,利用EM算法求解获得用户兴趣表示;将所述用户兴趣表示输入至多层感知机,获得用户行为预测结果。
全文数据:
权利要求:
百度查询: 北京交通大学 一种基于贝叶斯最优传输的用户行为建模方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。