买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:南京大学
摘要:本发明公开了一种基于南北半球年代际模态的人工智能年代际气候预测方法,包括:基于去除长期趋势并进行低频滤波后的全球海表面温度和降水、气温等气候要素的季节平均历史观测数据;分别提取北半球海气系统随季节演变的主要年代际模态和与之独立的南半球海气系统随季节演变的主要年代际模态;通过人工智能方法建立所述主要年代际模态和气候要素间在不同时滞步长的映射关系,构建相应气候要素的年代际气候预测模型;通过将所述主要年代际模态的近期观测状态或未来预测状态导入预测模型,得到气候要素在未来几年到数十年内的实时预测结果。
主权项:1.一种基于南北半球年代际模态的人工智能年代际气候预测方法,其特征在于,包括以下步骤:获取预设历史时间段内气候要素的逐月历史观测数据;根据所述逐月历史观测数据,获取所述气候要素去除长期趋势并进行低频滤波后的各季节平均的逐年历史观测数据;根据所述去除长期趋势并进行低频滤波后的各季节平均的逐年历史观测数据,分别提取北半球海气系统随季节演变的主要年代际模态和与之独立的南半球海气系统随季节演变的主要年代际模态,得到各所述主要年代际模态的时间序列和空间型;根据各所述主要年代际模态的时间序列,通过人工智能方法建立所述主要年代际模态和气候要素间在不同时滞步长的映射关系,构建相应气候要素的年代际气候预测模型;通过将所述主要年代际模态的近期观测状态或未来预测状态导入所述年代际气候预测模型,得到针对所述气候要素在未来预设时间段内的预测结果。
全文数据:
权利要求:
百度查询: 南京大学 基于南北半球年代际模态的人工智能年代际气候预测方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。