买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
摘要:本发明提供了基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,具体方法为:首先先根据FADEC系统的状态转移特点,建立两故障状态的FADEC马尔科夫模型;其次,建立FADEC系统不同状态下的转移概率方程;然后,针对两故障状态转移概率方程,根据两故障的类型和故障发生的先后顺序,分析得到不同情况下的两故障修复时间;最后,建立和求解FADEC系统的状态转移概率方程组,得到不同故障限制派遣间隔下的推力控制丧失率,从中优选出满足推力控制丧失率等要求的故障限制派遣间隔。本发明在FADEC单故障马尔科夫模型基础上,结合实际的限制派遣情况,进一步考虑了两故障状态,使得建立的马尔科夫模型更加符合实际,分析得到的FADEC系统故障限制派遣间隔更精确。
主权项:1.基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,具体包括如下步骤:步骤1:基于FADEC系统的完好状态FU、单故障状态Fi、两故障状态Fij、推力控制丧失状态LOTC的四种状态,建立马尔科夫模型;即状态转移模型;步骤2:根据上述的状态转移模型,得到各状态的状态转移概率方程;步骤3:针对两故障状态的状态转移概率方程,根据两故障的类型和故障发生的先后顺序,得到两故障状态下所需时间限制性派遣间隔和系统的修复率;所述时间限制性派遣间隔为系统修复故障需要的时间;步骤4:根据各状态的状态转移概率方程建立FADEC系统的状态转移概率方程组,并将n组时间限制性派遣间隔组两故障状态下所需时间限制性派遣间隔和系统的修复率作为该方程组的输入;为系统修复短时故障需要的时间,为系统修复长时故障需要的时间;得到n组系统推力控制丧失率,从而优选出满足推力控制丧失率要求的时间限制派性遣间隔组,所述推力控制丧失率要求为:推力控制丧失率≤10-5;所述步骤1中建立马尔科夫模型的具体方法为:步骤1.1:当失效率为λi的部件i发生故障,且λi<100E-4,即该故障不会直接导致系统进入推力控制丧失状态时,系统由完好状态转移至单故障状态;即进行时间限制性派遣,如果该故障直接导致系统进入推力控制丧失状态,则系统直接由完好状态转移至推力控制丧失状态,并转步骤1.5;步骤1.2:在时间限制性派遣过程中,如果没有发生新的故障,则单故障时间限制性派遣间隔故障被修复,并转步骤1.1,重新开始新的一轮状态转移,如果发生新的故障则转步骤1.3;步骤1.3:失效率为λj的部件j发生故障,且λj<100E-4时,系统由单故障状态转移至两故障状态,并转步骤1.4;如果λj≥100E-4,则转步骤1.5;步骤1.4:系统处于两故障状态,在达到两故障时间限制性派遣间隔后,两个故障均被修复,系统从两故障状态转移至完好状态;并转步骤1.1,重新开始一轮新的状态转移;步骤1.5:当系统进入推力控制丧失状态时,通过停机修复,使系统回到完好状态,并转步骤1.1,重新开始新的一轮状态转移;所述各状态的状态转移概率方程为:完好状态的状态转移概率方程: 其中,PFU为系统处于完好状态的概率;μi为部件i发生故障后系统的修复率,PFi为系统处于单故障状态的概率,PFij为系统处于两故障状态的概率;μij为部件i和j先后发生故障后系统的修复率,PLOTC为系统处于推力控制丧失状态的概率,μF为发生推力控制丧失后的系统修复率,λHMU为机械液压故障与未覆盖故障失效率之和,λi部件i的失效率;单故障状态的状态转移概率方程为: 其中λi_L为部件i发生故障后导致系统推力控制丧失的失效率;λj为部件j的失效率;两故障状态的状态的转移概率方程为: 其中λij_L为部件i和部件j发生故障后导致系统推力控制丧失的失效率;推力控制丧失状态的状态转移概率方程为: 所述步骤3中两故障状态包括三种情况,具体为:部件i先发生短时故障,部件j后发生短长时故障、部件i先发生长时故障,部件j后发生短时故障、部件i和j先后发生长时故障;所述得到两故障状态下所需时间限制性派遣间隔的具体方法为:部件i先发生短时故障,部件j后发生短长时故障:如果短时故障先发生后,经过时间τ,又有短长时故障发生,在达到时间τ后,对两个故障同时修复,则该情况下两故障的修复时间部件i先发生长时故障,部件j后发生短时故障:如果长时故障先发生,后经过时间τ,又有短时故障发生,如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是部件i和j先后发生长时故障:如果长时故障先发生,后经过时间τ,又有长时故障发生,则该种情况下两故障的修复时间是所述得到两故障状态下系统的修复率的具体方法为:部件i先发生短时故障,部件j后发生短长时故障时系统的修复率μij的对数函数如公式5所示: 其中λj为部件j的失效率;部件i先发生长时故障,部件j后发生短时故障时系统的修复率μij的对数函数如公式6所示: 部件i和j先后发生长时故障时系统的修复率μij的对数函数如公式7所示: 所述得到n组系统推力控制丧失率的具体方法为:步骤4.1:将n个时间长度为t1,t2,...,tn的长时故障的时间限制性派遣间隔和一个时间长度为t的短时故障的时间限制性派遣间隔依次组成时间限制性派遣间隔组则有n组t1<t2<...<tn;步骤4.2:在FADEC系统平衡时,任何一个状态的转入和转出的是相等的,得到如下方程: 其中PFU为系统处于完好状态的概率;PFi为系统处于单故障状态的概率;PFij为系统处于两故障状态的概率;PLOTC为系统处于推力控制丧失状态的概率;由于所有的状态总和为1,则得到公式9:PFU+∑PFi+ΣPFij+PLOTC=19步骤4.3:根据FADEC系统的完好状态、单故障状态、两故障状态、推力控制丧失状态下的各状态转移概率方程建立方程组,并将公式8、公式9、n组修复两故障需要的时间和系统的修复率代入该方程组,求解该方程组,从而得到每组对应的系统进入推力控制丧失的概率PLOTC;即得到n组PLOTC;步骤4.4:根据马尔科夫模型,得到每组时间限制性派遣间隔对应的系统推力控制丧失率λLOTC; 其中μF为发生推力控制丧失后的系统修复率。
全文数据:基于两故障马尔科夫模型的FADEC时间限制派遣分析方法技术领域本发明属于时间限制派遣领域,尤其涉及一种基于两故障马尔科夫模型的FADEC时间限制派遣分析方法。背景技术航空发动机全权限电子控制系统FADEC,fullauthoritydigitalenginecontrol的时间限制派遣分析是飞机系统安全性分析的重要内容,是商用飞机及航空发动机型号合格审定的一项必要工作。时间限制派遣分析的目标是确定FADEC系统中短时故障和长时故障的限制派遣间隔,以满足“推力控制丧失率≤10-5飞行小时”的安全标准要求。目前采用的方法主要有两种,时间加权平均法TWA,timeweightedaverage和马尔科夫模型方法,其中时间加权平均法精度较低,而马尔科夫模型方法由于需要建立复杂的马尔科夫模型使得应用难度大,尤其对于元器件数量较多的FADEC系统而言更是如此。因此,在目前的马尔科夫模型中只考虑单故障状态,忽略了多故障状态的实际情况,因而单故障马尔科夫模型的精度得不到保证。发明内容发明目的:为解决上述现有技术中马尔科夫模型中只考虑单故障状态,导致该模型精度不高的缺点,本发明提供一种基于两故障马尔科夫模型的FADEC时间限制派遣分析方法。技术方案:为解决上述技术问题,本发明提供一种基于两故障马尔科夫模型的FADEC时间限制派遣分析方法;具体包括如下步骤:步骤1:基于FADEC系统的完好状态FU、单故障状态Fi、两故障状态Fij、推力控制丧失状态LOTC的四种状态,建立马尔科夫模型;即状态转移模型;步骤2:根据上述的状态转移模型,得到各状态的状态转移概率方程;步骤3:针对两故障状态的状态转移概率方程,根据两故障的类型和故障发生的先后顺序,得到两故障状态下所需时间限制性派遣间隔和系统的修复率;所述时间限制性派遣间隔为系统修复故障需要的时间;步骤4:根据各状态的状态转移概率方程建立FADEC系统的状态转移概率方程组,并将n组时间限制性派遣间隔组两故障状态下所需时间限制性派遣间隔和系统的修复率作为该方程组的输入;为系统修复短时故障需要的时间,为系统修复长时故障需要的时间;得到n组系统推力控制丧失率,从而优选出满足推力控制丧失率要求的时间限制派性遣间隔组,所述推力控制丧失率要求为:推力控制丧失率≤10-5。进一步的,所述步骤1中建立马尔科夫模型的具体方法为:步骤1.1:当失效率为λi的部件i发生故障,且λi<100E-4,即该故障不会直接导致系统进入推力控制丧失状态时,系统由完好状态转移至单故障状态;即进行时间限制性派遣,如果该故障直接导致系统进入推力控制丧失状态,则系统直接由完好状态转移至推力控制丧失状态,并转步骤1.5;步骤1.2:在时间限制性派遣过程中,如果没有发生新的故障,则单故障时间限制性派遣间隔故障被修复,并转步骤1.1,重新开始新的一轮状态转移,如果发生新的故障则转步骤1.3;步骤1.3:失效率为λj的部件j发生故障,且λj<100E-4时,系统由单故障状态转移至两故障状态,并转步骤1.4;如果λj≥100E-4,则转步骤1.5;步骤1.4:系统处于两故障状态,在达到两故障时间限制性派遣间隔后,两个故障均被修复,系统从两故障状态转移至完好状态;并转步骤1.1,重新开始一轮新的状态转移;步骤1.5:当系统进入推力控制丧失状态时,通过停机修复,使系统回到完好状态,并转步骤1.1,重新开始新的一轮状态转移。进一步的,所述各状态的状态转移概率方程为:完好状态的状态转移概率方程:其中,PFU为系统处于完好状态的概率;μi为部件i发生故障后系统的修复率,PFi为系统处于单故障状态的概率,PFij为系统处于两故障状态的概率;μij为部件i和j先后发生故障后系统的修复率,PLOTC为系统处于推力控制丧失状态的概率,μF为发生推力控制丧失后的系统修复率,λH汰U为机械液压故障与未覆盖故障失效率之和,λi部件i的失效率;单故障状态的状态转移概率方程为:其中λi_L为部件i发生故障后导致系统推力控制丧失的失效率;λj为部件j的失效率;两故障状态的状态的转移概率方程为:其中λij_L为部件i和部件j发生故障后导致系统推力控制丧失的失效率;推力控制丧失状态的状态转移概率方程为:进一步的,所述步骤3中两故障状态包括三种情况,具体为:部件i先发生短时故障,部件j后发生短长时故障、部件i先发生长时故障,部件j后发生短时故障、部件i和j先后发生长时故障;所述得到两故障状态下所需时间限制性派遣间隔的具体方法为:部件i先发生短时故障,部件j后发生短长时故障:如果短时故障先发生后,经过时间τ,又有短长时故障发生,在达到时间τ后,对两个故障同时修复,则该情况下两故障的修复时间部件i先发生长时故障,部件j后发生短时故障:如果长时故障先发生,后经过时间τ,又有短时故障发生,如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是部件i和j先后发生长时故障:如果长时故障先发生,后经过时间τ,又有长时故障发生,则该种情况下两故障的修复时间是进一步的,所述得到两故障状态下系统的修复率的具体方法为:部件i先发生短时故障,部件j后发生短长时故障时系统的修复率μij的对数函数如公式5所示:其中λj为部件j的失效率;部件i先发生长时故障,部件j后发生短时故障时系统的修复率μij的对数函数如公式6所示:部件i和j先后发生长时故障时系统的修复率μij的对数函数如公式7所示:进一步的,所述得到n组系统推力控制丧失率的具体方法为:步骤4.1:将n个时间长度为t1,t2,...,tn的长时故障的时间限制性派遣间隔和一个时间长度为t的短时故障的时间限制性派遣间隔依次组成时间限制性派遣间隔组则有n组t1<t2<...<tn;步骤4.2:在FADEC系统平衡时,任何一个状态的转入和转出的是相等的,得到如下方程:其中PFU为系统处于完好状态的概率;PFi为系统处于单故障状态的概率;PFij为系统处于两故障状态的概率;PLOTC为系统处于推力控制丧失状态的概率;由于所有的状态总和为1,则得到公式9:PFU+∑PFi+∑PFij+PLOTC=19步骤4.3:根据FADEC系统的完好状态、单故障状态、两故障状态、推力控制丧失状态下的各状态转移概率方程建立方程组,并将公式8、公式9、n组修复两故障需要的时间和系统的修复率代入该方程组,求解该方程组,从而得到每组对应的系统进入推力控制丧失的概率PLOTC;即得到n组PLOTC;步骤4.4:根据两故障马尔科夫模型,得到每组时间限制性派遣间隔对应的系统推力控制丧失率λLOTC;其中μF为发生推力控制丧失后的系统修复率。有益效果:本发明在FADEC单故障马尔科夫模型基础上,结合实际的限制派遣情况,进一步考虑了两故障状态,使得建立的马尔科夫模型更加符合实际,分析得到的FADEC系统故障限制派遣间隔更精确。附图说明图1为本发明的两故障马尔科夫模型;图2为本发明中部件i先发生短时故障,部件j后发生短长时故障时,系统修复故障所需时间的计算图;图3为本发明中部件i先发生长时故障,部件j后发生短时故障时,系统修复故障所需时间的计算图;图4为本发明部件i和j先后发生长时故障时,系统修复故障所需时间的计算图;图5为本发明不同长时故障限制派遣间隔下的推力控制丧失率。具体实施方式构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。本实施例提供一种基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,首先根据FADEC系统的构成和工作原理,建立以“推力控制丧失”为顶事件的故障树,根据各元器件的失效率,可以计算出各元器件失效导致的瞬时推力控制丧失率,根据得到的瞬时推力控制丧失率,本实施例将每飞行小时瞬时丧失率部件的失效率大于100×10-6所对应故障归为不准派遣故障;将每飞行小时瞬时丧失率在[75×10-6,100×10-6]范围内所对应故障归为短时故障;将每飞行小时瞬时丧失率小于75×10-6所对应故障归为长时故障。该FADEC系统有85个元器件,通过分析可知其中有10个不准派遣故障,2个短时故障,73个长时故障。其次建立如图1所示的两故障马尔科夫模型,即状态转移模型,图中PFU,PFi,PFijandPLOTC分别为FADEC系统处于完好、单故障、两故障、推力控制丧失等四种状态的概率;μi为部件i发生故障后系统的修复率,μij为部件i和j先后发生故障后系统的修复率,μF为发生推力控制丧失后的系统修复率,λH汰U为机械液压故障与未覆盖故障失效率之和;λi_L为部件i发生故障后导致系统推力控制丧失的失效率;具体建立两故障马尔科夫模型的步骤为:步骤1.1:当失效率为λi的部件i发生故障,且λi<100E-4,即该故障不会直接导致系统进入推力控制丧失状态时,系统由完好状态转移至单故障状态;即进行时间限制性派遣,并转步骤1.2,如果该故障直接导致系统进入推力控制丧失状态,则系统直接由完好状态转移至推力控制丧失状态,并转步骤1.5;步骤1.2:在时间限制性派遣过程中,如果没有发生新的故障,则单故障时间限制性派遣间隔故障被修复,并转步骤1.1,重新开始新的一轮状态转移,如果发生新的故障则转步骤1.3;步骤1.3:失效率为λj的部件j发生故障,且λj<100E-4时,系统由单故障状态转移至两故障状态,并转步骤1.4;如果λj≥100E-4,则转步骤1.5;步骤1.4:系统处于两故障状态,在达到两故障时间限制性派遣间隔后,两个故障均被修复,系统从两故障状态转移至完好状态;并转步骤1.1,重新开始一轮新的状态转移;步骤1.5:当系统进入推力控制丧失状态时,通过停机修复,使系统回到完好状态,并转步骤1.1,重新开始新的一轮状态转移。根据图1的状态转移模型,得到各状态的状态转移概率方程;完好状态的状态转移概率方程:单故障状态的状态转移概率方程为:两故障状态的状态的转移概率方程为:推力控制丧失状态的状态转移概率方程为:针对两故障状态的状态转移概率方程,根据两故障的类型和故障发生的先后顺序,得到部件i先发生短时故障,部件j后发生短长时故障、部件i先发生长时故障,部件j后发生短时故障、部件i和j先后发生长时故障这三种情况的两故障状态下所需时间限制性派遣间隔和系统的修复率;得到所需时间限制性派遣间隔的具体方法为:如图2所示,部件i先发生短时故障,部件j后发生短长时故障:如果短时故障先发生后,经过时间τ,又有短长时故障发生,在达到时间τ后,对两个故障同时修复,则该情况下两故障的修复时间如图3所示,部件i先发生长时故障,部件j后发生短时故障:如果长时故障先发生,后经过时间τ,又有短时故障发生,如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是如图4所示,部件i和j先后发生长时故障:如果长时故障先发生,后经过时间τ,又有长时故障发生,则该种情况下两故障的修复时间是所述得到两故障状态下系统的修复率的具体方法为:部件i先发生短时故障,部件j后发生短长时故障时系统的修复率μij的对数函数如公式15所示:其中λj为部件j的失效率;部件i先发生长时故障,部件j后发生短时故障时系统的修复率μij的对数函数如公式16所示:部件i和j先后发生长时故障时系统的修复率μij的对数函数如公式17所示:根据公式11-14,除去两故障组合中导致每飞行小时瞬时丧失率大于100×10-6的情况,建立FAEDC系统的状态转移概率方程组,方程组中方程的数量取决与FADEC系统短时故障数量、长时故障的数量和两故障的数量,本实施例中共列出5097个转移概率方程,各方程的系数如表1所示:表1各转移概率方程的系数矩阵将n个时间长度为t1,t2,...,tn的长时故障的时间限制性派遣间隔和一个时间长度为t的短时故障的时间限制性派遣间隔依次组成时间限制性派遣间隔组则有n组t1<t2<...<tn;本实施例中μS=0.008飞行小时;在FADEC系统平衡时,根据任何一个状态的转入和转出的是相等的理论,得到如下方程:由于所有的状态总和为1,则得到公式19:PFU+∑PFi+∑PFij+PLOTC=119将公式15~19、n组修复两故障需要的时间和系统修复率带入表1的方程组,从而求解该方程组,得到μS=0.008飞行小时时,不同长时故障的时间限制性派遣间隔下的推力控制丧失的概率PLOTC。根据马尔科夫模型,得到每组时间限制性派遣间隔组对应的系统推力控制丧失率λLOTC,;优选出满足推力控制丧失率要求推力控制丧失率≤10-5飞行小时的时间限制派性遣间隔组,如图5可以看出当长时故障限制派遣间隔为1126飞行小时时,推力控制丧失率正好为10-5飞行小时。选取不同的短时故障限制派遣间隔,采用上面同样的方法,得到更多类似图5所示的结果,以“推力控制丧失率≤10-5飞行小时”为约束,以维修成本和利用率等目标,从所有结果中优选出合适的短时和长时故障限制派遣间隔。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
权利要求:1.基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,具体包括如下步骤:步骤1:基于FADEC系统的完好状态FU、单故障状态Fi、两故障状态Fij、推力控制丧失状态LOTC的四种状态,建立马尔科夫模型;即状态转移模型;步骤2:根据上述的状态转移模型,得到各状态的状态转移概率方程;步骤3:针对两故障状态的状态转移概率方程,根据两故障的类型和故障发生的先后顺序,得到两故障状态下所需时间限制性派遣间隔和系统的修复率;所述时间限制性派遣间隔为系统修复故障需要的时间;步骤4:根据各状态的状态转移概率方程建立FADEC系统的状态转移概率方程组,并将n组时间限制性派遣间隔组两故障状态下所需时间限制性派遣间隔和系统的修复率作为该方程组的输入;为系统修复短时故障需要的时间,为系统修复长时故障需要的时间;得到n组系统推力控制丧失率,从而优选出满足推力控制丧失率要求的时间限制派性遣间隔组,所述推力控制丧失率要求为:推力控制丧失率≤10-5。2.根据权利要求1所述的基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,所述步骤1中建立马尔科夫模型的具体方法为:步骤1.1:当失效率为λi的部件i发生故障,且λi<100E-4,即该故障不会直接导致系统进入推力控制丧失状态时,系统由完好状态转移至单故障状态;即进行时间限制性派遣,如果该故障直接导致系统进入推力控制丧失状态,则系统直接由完好状态转移至推力控制丧失状态,并转步骤1.5;步骤1.2:在时间限制性派遣过程中,如果没有发生新的故障,则单故障时间限制性派遣间隔故障被修复,并转步骤1.1,重新开始新的一轮状态转移,如果发生新的故障则转步骤1.3;步骤1.3:失效率为λj的部件j发生故障,且λj<100E-4时,系统由单故障状态转移至两故障状态,并转步骤1.4;如果λj≥100E-4,则转步骤1.5;步骤1.4:系统处于两故障状态,在达到两故障时间限制性派遣间隔后,两个故障均被修复,系统从两故障状态转移至完好状态;并转步骤1.1,重新开始一轮新的状态转移;步骤1.5:当系统进入推力控制丧失状态时,通过停机修复,使系统回到完好状态,并转步骤1.1,重新开始新的一轮状态转移。3.根据权利要求1所述的基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,所述各状态的状态转移概率方程为:完好状态的状态转移概率方程:其中,PFU为系统处于完好状态的概率;μi为部件i发生故障后系统的修复率,PFi为系统处于单故障状态的概率,PFij为系统处于两故障状态的概率;μij为部件i和j先后发生故障后系统的修复率,PLOTC为系统处于推力控制丧失状态的概率,μF为发生推力控制丧失后的系统修复率,λHMU为机械液压故障与未覆盖故障失效率之和,λi部件i的失效率;单故障状态的状态转移概率方程为:其中λi_L为部件i发生故障后导致系统推力控制丧失的失效率;λj为部件j的失效率;两故障状态的状态的转移概率方程为:其中λij_L为部件i和部件j发生故障后导致系统推力控制丧失的失效率;推力控制丧失状态的状态转移概率方程为:4.根据权利要求1所述的基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,所述步骤3中两故障状态包括三种情况,具体为:部件i先发生短时故障,部件j后发生短长时故障、部件i先发生长时故障,部件j后发生短时故障、部件i和j先后发生长时故障;所述得到两故障状态下所需时间限制性派遣间隔的具体方法为:部件i先发生短时故障,部件j后发生短长时故障:如果短时故障先发生后,经过时间τ,又有短长时故障发生,在达到时间τ后,对两个故障同时修复,则该情况下两故障的修复时间部件i先发生长时故障,部件j后发生短时故障:如果长时故障先发生,后经过时间τ,又有短时故障发生,如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是如果短时故障发生在的期间内发生,则该种情况下两故障的修复时间是部件i和j先后发生长时故障:如果长时故障先发生,后经过时间τ,又有长时故障发生,则该种情况下两故障的修复时间是5.根据权利要求4所述的基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,所述得到两故障状态下系统的修复率的具体方法为:部件i先发生短时故障,部件j后发生短长时故障时系统的修复率μij的对数函数如公式5所示:其中λj为部件j的失效率;部件i先发生长时故障,部件j后发生短时故障时系统的修复率μij的对数函数如公式6所示:部件i和j先后发生长时故障时系统的修复率μij的对数函数如公式7所示:6.根据权利要求1所述的基于两故障马尔科夫模型的FADEC时间限制派遣分析方法,其特征在于,所述得到n组系统推力控制丧失率的具体方法为:步骤4.1:将n个时间长度为t1,t2,...,tn的长时故障的时间限制性派遣间隔和一个时间长度为t的短时故障的时间限制性派遣间隔依次组成时间限制性派遣间隔组则有n组t1<t2<...<tn;步骤4.2:在FADEC系统平衡时,任何一个状态的转入和转出的是相等的,得到如下方程:其中PFU为系统处于完好状态的概率;PFi为系统处于单故障状态的概率;PFij为系统处于两故障状态的概率;PLOTC为系统处于推力控制丧失状态的概率;由于所有的状态总和为1,则得到公式9:PFU+∑PFi+∑PFij+PLOTC=19步骤4.3:根据FADEC系统的完好状态、单故障状态、两故障状态、推力控制丧失状态下的各状态转移概率方程建立方程组,并将公式8、公式9、n组修复两故障需要的时间和系统的修复率代入该方程组,求解该方程组,从而得到每组对应的系统进入推力控制丧失的概率PLOTC;即得到n组PLOTC;步骤4.4:根据马尔科夫模型,得到每组时间限制性派遣间隔对应的系统推力控制丧失率λLOTC;其中μF为发生推力控制丧失后的系统修复率。
百度查询: 南京航空航天大学 基于两故障马尔科夫模型的FADEC时间限制派遣分析方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。