Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种航空压气机故障预测方法及系统 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

摘要:本发明一种航空压气机故障预测方法及系统,属于航空压气机故障预测领域;方法步骤包括:多周期多传感器数据构造;周期性特征提取与数据解耦:对多周期多传感器二维样本数据进行傅里叶变换,提取周期性特征;基于周期性特征将多周期多传感器二维样本解耦为短期和长期的多周期序列,将解耦后的多周期序列重构为二维张量;多模式特征提取与融合:使用二维卷积神经网络CNN和Transformer结构进行并行特征提取,再使用门控循环单元GRU进行多模式特征的高阶融合;二维卷积神经网络优化与故障预测。本发明通过周期性特征的全面解耦合高效融合,提高了航空压气机故障预测的精确性和实时性。

主权项:1.一种航空压气机故障预测方法,其特征在于具体步骤如下:多周期多传感器数据构造:通过传感器采集压气机正常运行、异常状态和故障发生的时序性多维数据,对所采集数据进行预处理,再通过堆叠多个时间周期的数据构造多周期多传感器二维样本;周期性特征提取与数据解耦:对多周期多传感器二维样本数据进行傅里叶变换,提取周期性特征;基于周期性特征将多周期多传感器二维样本解耦为短期和长期的多周期序列,将解耦后的多周期序列重构为二维张量;多模式特征提取与融合:使用二维卷积神经网络CNN和Transformer结构进行并行特征提取,再使用门控循环单元GRU进行多模式特征的高阶融合;二维卷积神经网络优化与故障预测。

全文数据:

权利要求:

百度查询: 西北工业大学 一种航空压气机故障预测方法及系统

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。