买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
摘要:本发明提供了一种两阶段的长尾学习方法,包括:利用具有长尾分布的图像分类的训练集对图像分类模型进行两阶段的多轮迭代训练,得到经训练的图像分类模型,其中:第一阶段的学习,包括:利用头部类集合和损失函数确定第一锐度感知梯度,以及利用尾部类集合和损失函数确定第二锐度感知梯度,根据第一锐度感知梯度和第二锐度感知梯度更新图像分类模型的参数;第二阶段的学习,包括:利用头部类集合和损失函数确定第一原始梯度,以及利用尾部类集合和损失函数确定第二锐度感知梯度,根据第一原始梯度和第二锐度感知梯度更新图像分类模型的参数,本发明方法在整体上提升了模型的泛化能力。
主权项:1.一种两阶段的长尾学习方法,其特征在于,包括:利用具有长尾分布的图像分类的训练集对图像分类模型进行两阶段的多轮迭代训练,得到经训练的图像分类模型,每轮训练包括:从训练集获取一个批次的样本,根据该批次的样本所含标签属于预设的头部类还是尾部类,将该批次的样本分至头部类集合或尾部类集合;判断模型训练是否达到预设要求,若否,当前轮次进行第一阶段的学习,若是,当前轮次进行第二阶段的学习,其中:第一阶段的学习,包括:利用头部类集合和损失函数确定第一锐度感知梯度,以及利用尾部类集合和损失函数确定第二锐度感知梯度,根据第一锐度感知梯度和第二锐度感知梯度更新图像分类模型的参数;执行第二阶段的学习,包括:利用头部类集合和损失函数确定第一原始梯度,以及利用尾部类集合和损失函数确定第二锐度感知梯度,根据第一原始梯度和第二锐度感知梯度更新图像分类模型的参数。
全文数据:
权利要求:
百度查询: 中国科学院计算技术研究所 一种两阶段的长尾学习方法
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。