Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

控制到范围积极性 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

摘要:提供了一种确定患有糖尿病的人的连续葡萄糖监测系统中的胰岛素的基础输注率调整的方法和系统。所述方法包括:由至少一个计算设备接收表示至少一个葡萄糖测量结果的信号;由所述至少一个计算设备基于所述信号来检测所述人的葡萄糖状态,所检测到的葡萄糖状态包括所述人的葡萄糖水平和所述葡萄糖水平的改变率;由所述至少一个计算设备确定当前风险度量,所述当前风险度量指示所述人的低血糖状况和高血糖状况中的至少一个的风险;以及由所述至少一个计算设备基于所述当前风险度量和包括至少一个积极性参数的控制到范围算法来计算对疗法递送设备的基础输注率的调整。

主权项:1.一种在人的连续葡萄糖监测系统中确定胰岛素的基础输注率调整的方法,所述方法包括:由至少一个计算设备接收表示至少一个葡萄糖测量结果的信号;由所述至少一个计算设备基于所述信号来检测所述人的葡萄糖状态,所检测到的葡萄糖状态包括所述人的葡萄糖水平和所述葡萄糖水平的改变率;由所述至少一个计算设备确定当前风险度量,所述当前风险度量指示所述人的低血糖状况和高血糖状况中的至少一个的风险,其中确定当前风险度量包括:由所述至少一个计算设备基于从所检测到的葡萄糖状态到目标葡萄糖状态的转移来确定返回路径,所述返回路径包括与到所述目标葡萄糖状态的返回相关联的至少一个中间葡萄糖值;由所述至少一个计算设备确定所述返回路径的累积危险值,所述累积危险值包括所述返回路径上的所述至少一个中间葡萄糖值的危险值之和,每一个危险值指示与对应中间葡萄糖值相关联的危险;以及由所述至少一个计算设备确定从所检测到的葡萄糖状态周围的葡萄糖状态分布生成的返回路径的累积危险值的加权平均;以及由所述至少一个计算设备基于所述当前风险度量和包括至少一个积极性参数的控制到范围算法来计算对疗法递送设备的基础输注率的调整,所述积极性参数选自:a利用扩缩因子对基于风险度量而生成的风险表面的扩缩,以调整与高血糖相关联的正危险值;b基于风险度量而生成的风险表面的转移,以计及用餐或校正丸剂之后的机载胰岛素;c对最大允许葡萄糖加速度的调整,葡萄糖加速度表示葡萄糖速度的改变率,并且葡萄糖速度表示葡萄糖值的改变率;d对表示对所测量的葡萄糖状态的信任的水平的葡萄糖状态不确定性的调整;或者e:a至d的组合。

全文数据:控制到范围积极性相关申请的交叉引用本申请要求2016年6月1日提交且名称为“CONTROL-TO-RANGEAGGRESSIVENESS”、序列号为15170,450的美国实用新型专利申请的优先权,该美国实用新型专利申请的全文通过引用并入本文。技术领域本发明总体上涉及处理从患有糖尿病的人测量的葡萄糖数据,且具体用于基于当前风险度量和包括至少一个积极性(aggressiveness)参数的控制到范围(control-to-range)算法来控制对疗法递送设备的基础输注率(basalrate)的调整。背景技术作为背景技术,人们遭受I型或II型糖尿病,其中血液中的糖水平未被身体适当地调节。这些人中的许多可能使用连续葡萄糖监测(CGM)以在持续进行的基础上监测他们的葡萄糖水平。为了执行CGM,可以将葡萄糖传感器置于皮肤下面,该葡萄糖传感器能够测量间质液中该人的葡萄糖水平。葡萄糖传感器可以以已知时间间隔(诸如,每一分钟)周期性地测量该人的葡萄糖水平,并将葡萄糖测量结果的结果传输到胰岛素泵、血糖仪、智能电话或其他电子监测器。在一些情况下,所测量的葡萄糖结果(来自葡萄糖传感器)可能未准确地表示葡萄糖浓度。葡萄糖传感器可能不时地发生故障,使得所测量的葡萄糖结果(来自葡萄糖传感器)可能与该人的实际葡萄糖水平基本上不同。葡萄糖传感器可能由于例如传感器电子器件或电池的失效或由于传感器“掉出”而以该方式发生故障。传感器掉出可能由于关于葡萄糖传感器到该人的附着的生理问题(诸如,传感器相对于该人的移动)而发生。传感器掉出可能使所测量的葡萄糖结果“掉”到零附近,尽管该人的实际葡萄糖水平可能高得多。附加地,葡萄糖传感器的校准可能漂移,从而导致朝着大于真实当前血糖水平或小于真实当前血糖水平的偏差。葡萄糖传感器还可能经历下述误差:该误差使CGM不再对真实血糖水平中的改变作出响应且保持在不正确的人为地高或人为地低的血糖读数处。最后,葡萄糖传感器可能处于使用初期,且在血糖测量中具有误差,直到稳定。由此,本公开的实施例可以处理来自该人的所测量的葡萄糖结果,使得该人的实际葡萄糖水平可以被估计,即使在存在传感器噪声和或传感器故障的情况下。附加地,可以基于所估计的葡萄糖水平来预测该人的未来葡萄糖水平。由此,本公开的实施例可以在调整基础胰岛素输注率时实现积极性参数,以计及葡萄糖传感器误差。发明内容在一个实施例中,提供了一种在患有糖尿病的人的连续葡萄糖监测系统中确定胰岛素的基础输注率调整的方法。所述方法包括:由至少一个计算设备接收表示至少一个葡萄糖测量结果的信号。进一步地,所述方法包括:由所述至少一个计算设备基于所述信号来检测所述人的葡萄糖状态,所检测到的葡萄糖状态包括所述人的葡萄糖水平和所述葡萄糖水平的改变率。附加地,所述方法包括:由所述至少一个计算设备确定当前风险度量,所述当前风险度量指示所述人的低血糖状况和高血糖状况中的至少一个的风险。最后,所述方法包括:由所述至少一个计算设备基于所述当前风险度量和包括至少一个积极性参数的控制到范围算法来计算对疗法递送设备的基础输注率的调整。在另一实施例中,提供了一种被配置成在患有糖尿病的人的连续葡萄糖监测系统中确定基础输注率调整的血糖管理设备。所述设备包括存储可执行指令的非瞬变计算机可读介质和至少一个处理设备,所述至少一个处理设备被配置成执行所述可执行指令,使得在由所述至少一个处理设备执行时,所述可执行指令使所述至少一个处理设备接收表示至少一个葡萄糖测量结果的信号。附加地,所述可执行指令使所述至少一个处理设备基于所述信号来检测所述人的葡萄糖状态,所检测到的葡萄糖状态包括所述人的葡萄糖水平和所述葡萄糖水平的改变率。进一步地,所述可执行指令使所述至少一个处理设备确定当前风险度量,所述当前风险度量指示人的低血糖状况和高血糖状况中的至少一个的风险。最后,所述可执行指令使所述至少一个处理设备:基于所述当前风险度量和包括至少一个积极性参数的控制到范围算法,来计算对疗法递送的基础输注率的调整。附图说明附图中阐述的实施例实质上是说明性且示例性的,而不意在限制由权利要求限定的本发明。说明性实施例的以下详细描述可以在结合以下附图而阅读时被理解,在以下附图中,利用相似的附图标记指示相似的结构,并且在附图中:图1图示了根据本文示出和描述的一个或多个实施例的连续葡萄糖监测(CGM)系统;图2图示了图2的CGM系统的示例性血糖管理设备、疗法递送设备和葡萄糖传感器,该血糖管理设备包括丸剂计算器模块、控制到范围逻辑和基础输注率调整逻辑;图3图示了绘制示例性CGM踪迹和经调整的用餐事件后最大允许葡萄糖的曲线图;图4A和4B分别图示了根据本文示出和描述的一个或多个实施例的典型基础输注乘数和在实现风险扩缩积极性参数的情况下的基础输注乘数;图4C分别图示了标称危险函数和在实现高血糖风险扩缩和高血糖风险转移的情况下的危险函数的曲线;图5A和5B分别图示了根据本文示出和描述的一个或多个实施例的典型基础输注乘数和在实现风险转移积极性参数的情况下的基础输注乘数;图6A和6B分别图示了根据本文示出和描述的一个或多个实施例的典型基础输注乘数和在实现增大的最大允许加速度积极性参数的情况下的基础输注乘数;图7A和7B分别图示了根据本文示出和描述的一个或多个实施例的典型基础输注乘数和在实现减小的最大允许积极性参数的情况下的基础输注乘数;图8A和8B分别图示了根据本文示出和描述的一个或多个实施例的典型基础输注乘数和在实现增大的不确定性积极性参数的情况下的基础输注乘数;以及图9A和9B分别图示了根据本文示出和描述的一个或多个实施例的典型基础输注乘数和在实现减小的不确定性积极性参数的情况下的基础输注乘数。具体实施方式本文描述的实施例总体上涉及下述方法和系统,其用于在患有糖尿病的人的连续葡萄糖监测系统中确定胰岛素的基础输注率调整,以及特别地用于在确定对基础输注率的调整时实现至少一个积极性参数。出于限定本公开的目的,“所测量的葡萄糖结果”是如葡萄糖传感器所测量的该人的葡萄糖水平;“实际葡萄糖水平”或“真实葡萄糖测量结果”是该人的实际葡萄糖水平。参考图1,图示了用于监测患有糖尿病的人(PWD)11的葡萄糖水平的示例性连续葡萄糖监测(CGM)系统10。特别地,CGM系统10操作成以预定可调整间隔(诸如,每一分钟、五分钟或以其他合适间隔)收集所测量的葡萄糖值。CGM系统10说明性地包括具有在该人的皮肤12下面插入的针或探针18的葡萄糖传感器16。针18的端部位于间质液14(诸如,血液或另一体液)中,使得由葡萄糖传感器16取得的测量结果基于间质液14中的葡萄糖的水平。葡萄糖传感器16被定位成邻近该人的腹部或者被定位在另一合适位置处。此外,葡萄糖传感器16可以被周期性地校准,以便改进其准确度。该周期性校准可以有助于校正由于传感器劣化所致的传感器漂移和传感器插入部位的生理状况中的改变。葡萄糖传感器16也可以包括其他部件,该其他部件包括但不限于无线发射器20和天线22。葡萄糖传感器16可以可替换地使用用于取得测量结果的其他合适设备,诸如例如非侵入式设备(例如,红外光传感器)。在取得测量结果时,葡萄糖传感器16经由通信链路24将所测量的葡萄糖值发射到计算设备26,说明性地,血糖(bG)管理设备26。bG管理设备26还可以被配置成在存储器39中存储在一段时间内从葡萄糖传感器16接收到的多个所测量的葡萄糖结果。CGM系统10进一步包括用于将疗法(例如,胰岛素)递送到该人的疗法递送设备31,说明性地,胰岛素输注泵31。胰岛素泵31经由通信链路35与管理设备26通信,并且管理设备26能够将丸剂和基础输注率信息传送到胰岛素泵31。胰岛素泵31包括具有通过该人11的皮肤12插入的用于注射胰岛素的针的导管33。胰岛素泵31说明性地被定位成邻近该人的腹部或被定位在另一合适位置处。类似于葡萄糖传感器16,输注泵31还包括用于与管理设备26通信的无线发射器和天线。胰岛素泵31操作成递送基础输注胰岛素(例如,连续地或重复地以基础输注率释放的小剂量的胰岛素)和丸剂胰岛素(例如,激增剂量的胰岛素,诸如例如在用餐事件附近)。丸剂胰岛素可以是响应于由用户触发的用户输入或者响应于来自管理设备26的命令而递送的。类似地,基础输注胰岛素的基础输注率是基于用户输入或响应于来自管理设备26的命令而设置的。输注泵31可以包括用于显示泵数据的显示器和提供用户控制的用户接口。在可替换实施例中,胰岛素泵31和葡萄糖传感器16可以是作为由患者穿戴的单个设备而提供的,并且由处理器或微控制器提供的逻辑的至少部分可以驻留于该单个设备上。还可以通过其他手段(诸如,由用户经由针手动地)注射丸剂胰岛素。在一个实施例中,这种CGM系统10被称作人工胰腺系统,其将闭环或半闭环疗法提供给患者,以逼近或模仿健康胰腺的自然功能。在这种系统中,基于CGM读数来计算胰岛素剂量,并基于CGM读数将胰岛素剂量自动递送到患者。例如,如果CGM指示用户具有高血糖水平或高血糖,则系统可以计算将用户的血糖水平降低到阈值水平以下或降低到目标水平所必需的胰岛素剂量,并自动递送该剂量。可替换地,系统可以自动地建议疗法中的改变(诸如,升高的胰岛素基础输注率或丸剂的递送),但可能要求用户在递送之前接受所建议的改变。如果CGM数据指示用户具有低血糖水平或低血糖,则单个地或者以任何期望的组合或顺序,系统可以例如自动地降低基础输注率,向用户建议降低基础输注率,自动地递送或建议用户发起递送一定量的物质(诸如例如,激素(胰高血糖素))以提高血液中的葡萄糖的浓度,建议用户例如摄取碳水化合物和或如可能适于解决低血糖状况那样自动地采取其他动作和或作出其他建议。在一些实施例中,可以在这种系统中采用多个药剂,诸如:降低血糖水平的第一药剂,例如胰岛素;以及提高血糖水平的第二药剂,例如胰高血糖素。说明性地,通信链路24、35是无线的(诸如,射频(“RF”)或其他合适无线频率),其中经由电磁波在传感器16、疗法递送设备31和管理设备26之间发射数据和控制。蓝牙(Bluetooth®)是使用近似2.4千兆赫(GHz)的频率的一种示例性类型的无线RF通信系统。另一种示例性类型的无线通信方案使用红外光,诸如由红外数据协会(InfraredDataAssociation®(IrDA®))支持的系统。可以提供其他合适类型的无线通信。此外,每一个通信链路24、35可以便于多个设备之间(诸如,葡萄糖传感器16、计算设备26、葡萄糖泵31和其他合适设备或系统之间)的通信。可替换地,可以在系统10的设备之间提供有线链路,诸如例如,有线以太网链路。可以使用其他合适公共或专有有线或无线链路。图2图示了图2的CGM系统10的示例性管理设备26。管理设备26包括:至少一个微处理器或微控制器32,其执行存储在管理设备26的存储器39中的软件和或固件代码。软件固件代码包含下述指令:该指令在由管理设备26的微控制器32执行时使管理设备26执行本文描述的功能。管理设备26可以可替换地包括一个或多个专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、硬连线逻辑或其组合。尽管管理设备26说明性地是葡萄糖监测器26,但可以提供其他合适管理设备26,诸如例如台式计算机、膝上型计算机、计算机服务器、个人数字助理(“PDA”)、智能电话、蜂窝设备、平板计算机、输注泵、包括葡萄糖测量引擎和PDA或蜂窝电话的集成设备等。尽管管理设备26被图示为单个管理设备26,但可以一起使用多个计算设备以执行本文描述的管理设备26的功能。存储器39是微控制器32可访问的任何合适计算机可读介质。存储器39可以是单个储存设备或多个储存设备,可以位于管理设备26内部或外部,且可以包括易失性介质和非易失性介质两者。进一步地,存储器39可以包括可移除介质和不可移除介质中的一个或全部两者。示例性存储器39包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程ROM(EEPROM)、闪速存储器、CD-ROM、数字多功能盘(DVD)或其他光盘储存器、磁储存设备、或者被配置成存储数据且可由管理设备26访问的任何其他合适介质。微控制器32还可以包括附加编程,以允许微控制器32学习用户偏好和或用户特性和或用户历史数据。该信息可以被利用以基于所检测到的趋势(诸如,权重增益或损失)来实现使用中的改变、建议。微控制器32还可以包括允许设备26生成报告(诸如,基于用户历史、遵从、趋势和或其他这种数据的报告)的编程。附加地,本公开的胰岛素输注泵31实施例可以包括用于暂停设备26的一个或多个功能(诸如,暂停递送协议)和或用于关闭设备26或其递送机构的“关闭”或“暂停”功能。对于一些实施例,两个或更多个微控制器32可以用于胰岛素输注泵31的控制器功能,其包括用于在低功率模式中维持编程和泵送功能以便节约电池寿命的高功率控制器和低功率控制器。管理设备26进一步包括操作地耦合到微控制器32的通信设备41。通信设备41包括操作成通过通信链路24、35在设备26和葡萄糖传感器16和胰岛素泵31之间发射和接收数据和控制的任何合适无线和或有线通信模块。在一个实施例中,通信设备41包括用于通过通信链路24、35无线接收和或发射数据的天线30(图1)。管理设备26在存储器39中存储所测量的葡萄糖结果和经由通信设备41从葡萄糖传感器16和或胰岛素泵31接收到的其他数据。管理设备26包括用于接收用户输入的一个或多个用户输入设备34。(一个或多个)输入设备34可以包括按钮、开关、鼠标指针、键盘、触摸屏或任何其他合适输入设备。显示器28操作地耦合到微控制器32,且可以包括被配置成将由微控制器32提供的信息显示给用户的任何合适显示器或监测器技术(例如液晶显示器等)。微控制器32被配置成向显示器28发射与该人的所检测到的葡萄糖状态相关的信息、与葡萄糖状态相关联的风险以及基础输注率和丸剂信息。葡萄糖状态可以包括所估计的葡萄糖水平和葡萄糖水平的所估计的改变率以及所估计的葡萄糖水平的质量或不确定性的估计。此外,所显示的信息可以包括与该人的所估计或所预测的葡萄糖水平是否是低血糖或高血糖有关的警告、警报等。例如,如果该人的葡萄糖水平降至预定低血糖阈值(诸如,每分升血50至70毫克葡萄糖(mgdl))以下(或被预测成降至预定低血糖阈值以下),则可以发出警告。管理设备26还可以被配置成可触知地将信息或警告传送到该人,诸如例如通过振动。在一个实施例中,管理设备26与远程计算设备(未示出)通信(诸如,在护理者的设施或护理者可访问的位置处),并且,在它们之间传送数据(例如,葡萄糖数据或其他生理信息)。在该实施例中,管理设备26和远程设备被配置成通过数据连接(诸如例如,经由因特网、蜂窝通信或者存储器设备(诸如,磁盘、USB密钥、致密盘或其他便携式存储器设备)的物理传送)来传送生理信息。微控制器32还包括控制到范围逻辑44。控制到范围系统通过仅在PWD11的葡萄糖水平逼近低或高葡萄糖阈值的情况下才调整胰岛素配量,来降低低血糖事件或高血糖事件的可能性。微控制器32包括:危险分析逻辑40,其基于累积危险值来计算从多个初始葡萄糖状态到目标葡萄糖状态的目标返回路径。说明性地,目标葡萄糖状态是不具有关联危险或风险的最优或理想葡萄糖状态(诸如,葡萄糖水平112.5mgdl和葡萄糖改变率0),尽管可以标识任何合适目标葡萄糖状态。每一个目标返回路径由在从初始葡萄糖状态到目标葡萄糖状态的转移期间将遇到的多个中间葡萄糖状态组成。与目标返回路径相关联的累积惩罚值存储在可被用作查找表的存储器76中。在下文中讨论累积惩罚值的计算。在一些实施例中,不准确葡萄糖测量结果可能由与葡萄糖传感器24相关联的故障和或噪声引起。由此,危险分析逻辑40分析利用葡萄糖传感器24提供的所检测到的葡萄糖状态的准确度概率。危险分析逻辑40可以使用任何合适概率分析工具以确定所测量的葡萄糖结果的准确度概率,诸如隐马尔可夫模型。基于所确定的准确度概率,危险分析逻辑40使用递归滤波器42来估计该人的葡萄糖水平和葡萄糖改变率。特别地,递归滤波器42(诸如例如,卡尔曼滤波器)利用所确定的葡萄糖传感器准确度概率对包括葡萄糖水平和改变率的所检测到的葡萄糖状态进行加权。基于葡萄糖传感器准确度概率,递归滤波器42计算所估计的葡萄糖状态的不确定性度量。不确定性度量指示所估计的葡萄糖状态的质量。对于一系列所检测到的葡萄糖状态,每一个状态的不确定性可能不同。图2的微控制器32进一步包括:丸剂计算器模块48,其计算可经由显示器28而显示给用户的用户的丸剂推荐和最大允许葡萄糖水平。管理设备26在存储器39中维持在当前时间之前随时间积累的用户的历史数据的记录。历史数据包括血糖历史、处方数据、在先丸剂推荐、在先配给丸剂、在先基础输注率、用户对胰岛素和碳水化合物的灵敏度的葡萄糖灵敏度因子、对在先丸剂和用餐事件的血糖响应、其他用户健康和医学数据、以及每一个事件和数据记录的时间戳。历史数据包括经由用户输入34而录入的患者记录的信息,诸如用餐事件、所消耗的碳水化合物的量、丸剂递送的确认、药剂、锻炼事件、压力时段、生理事件、手动胰岛素注射和其他健康事件。丸剂计算器模块48使用历史数据以更准确且高效地确定所推荐的胰岛素丸剂和或碳水化合物量。丸剂计算器模块48基于当前葡萄糖状态、历史数据和用户输入来确定对用户来说特定的所推荐的丸剂(诸如,胰岛素校正丸剂或用餐丸剂)。所建议的用餐丸剂(例如,碳水化合物量)可以响应于所检测到或所预测的低血糖状况。所建议的胰岛素校正丸剂可以响应于所检测到的葡萄糖超过最大可允许葡萄糖水平。所消耗的碳水化合物的实际量和所配给的胰岛素的实际量可以被用户确认为经由用户输入34而录入且与其他历史数据一起在存储器39中记录的信息。所推荐的丸剂可以被显示在显示器28上。参考图3,图示了示例性CGM踪迹100,其中x轴表示以分钟为单位的时间并且y轴表示以mgdl为单位的葡萄糖。CGM踪迹100包括在一时段内测量的一系列所检测到的葡萄糖水平。在所说明的实施例中,CGM踪迹100表示经滤波的葡萄糖水平,即,基于利用传感器准确度概率加权的所测量的葡萄糖水平而估计的葡萄糖水平。最近的所估计的葡萄糖水平110具有利用箭头112指示的关联的负改变率。丸剂计算器模块48确定目标葡萄糖水平102以及利用葡萄糖上限104和葡萄糖下限106指示的目标葡萄糖水平范围。出于说明性目的,目标葡萄糖水平102是110mgdl,葡萄糖上限104是140mgdl,并且葡萄糖下限106是80mgdl,尽管可以提供其他合适值。丸剂计算器模块48可以至少部分地基于本文描述的用户的历史数据来确定目标葡萄糖水平102和界限104、106。管理设备26使用CGM踪迹100的趋势葡萄糖数据以推荐朝着目标葡萄糖水平102移动血糖的校正动作。图3的目标葡萄糖水平102对应于时间t1前和时间t2后(即,当尚未存在任何最近用餐或校正丸剂时)的最大允许葡萄糖。在时间t1和t2之间,基于用餐事件114或其他合适事件来调整最大允许葡萄糖。在时间t1处,当用户消耗餐食并将指示随该餐食消耗的碳水化合物的量的碳水化合物数据录入到管理设备26中时,用餐事件114发生。在一些实例中,在大约用餐事件114的时间处配给胰岛素丸剂,以抵消由餐食引起的葡萄糖水平中的预期升高。丸剂计算器模块48基于所消耗的碳水化合物、胰岛素校正丸剂(如果被配给的话)以及用户的与用餐和胰岛素注射之后的葡萄糖摇摆相关的历史数据,来确定所预计的葡萄糖水平上升和该葡萄糖上升的持续时间。基于所预计的葡萄糖上升,丸剂计算器模块48确定所允许的上升值124、偏移时间值126和作用时间值122。所允许的上升值124可以基于其他事件,诸如例如胰高血糖素注射、锻炼、睡眠、驾驶或一天中的时间。所允许的上升值124是用户的葡萄糖水平可以被允许由于碳水化合物摄入和胰岛素丸剂而相对于目标葡萄糖水平102升高的量。在一些实施例中,所允许的上升值124是由胰岛素丸剂引起的校正增量葡萄糖值130和由用餐事件114引起的用餐上升值132的组合。校正增量葡萄糖值130是在胰岛素丸剂的时间处当前葡萄糖水平与目标葡萄糖水平102之间的差值,以允许葡萄糖水平在胰岛素之后降低的时间。如所图示的那样,所允许的上升值124在用餐和胰岛素配给之后的第一预定量的时间(即,偏移时间126)内恒定(参见线118),且然后在偏移时间126之后线性减小(参见斜坡120)。用餐和胰岛素剂量对患者的bG水平有影响的总时间是作用时间122。图3图示了计及胰岛素剂量和用餐事件的影响的所允许的上升值124的梯形曲线图116。最大允许葡萄糖基于所允许的上升值124而增加,并遵循图3的曲线116。由此,丸剂计算器模块48根据曲线116来在作用时间122的持续时间内扩充用餐事件后的可允许葡萄糖水平的范围。说明性地,所允许的上升值124具有初始高度50mgdl,但可以基于餐食大小、胰岛素、以及用户对来自历史数据的丸剂的典型反应而具有其他合适高度。在一些实施例中,对于碳水化合物的阈值量以上的用餐事件,餐食上升值132是固定的。作为一个示例,取决于用户、餐食大小和胰岛素丸剂,偏移时间126是大约两小时,并且作用时间122是大约三至五小时。再次参考图2,管理设备26进一步包括:基础输注率调整逻辑50,操作成基于当前葡萄糖状态和与当前葡萄糖状态相关联的风险来计算和调整基础输注率。管理设备26经由通信链路35来在控制信号中将对基础输注率的调整发射到胰岛素泵31,并且胰岛素泵31基于该调整来调整当前胰岛素基础输注率。可替换地,经调整的基础输注率可以被显示给用户,并且用户手动调整胰岛素泵31的基础输注率。在一个或多个实施例中,该调整是基于低血糖风险而对初始未调整或标称基础输注率的百分比降低或者基于高血糖状况风险而对初始未调整或标称基础输注率的百分比提高。基础输注率调整逻辑50确定基础输注率是否要被调整。如果经调整的基础输注率是适当的,则基础输注率调整逻辑50计算经调整的基础输注率,并且管理设备26将控制信号发射到胰岛素泵31以使胰岛素泵31以经调整的基础输注率递送胰岛素。可替换地,管理设备26可以将经调整的基础输注率显示给用户以提示用户手动调整胰岛素泵31。在一些实施例中,经调整的基础输注率的实现可以被用户经由胰岛素泵31的手动控制来超控。然而,因为连续葡萄糖监测系统10的控制到范围控制必须能够针对多种患有糖尿病的人和各种生活方式而工作,所以可以调整控制到范围控制的积极性。积极性是CGM系统10增加被递送到PWD11的胰岛素的意愿。更有积极性的系统更可能向PWD给出更多胰岛素,这导致更加负向的葡萄糖速度。PWD11的个体生理特性和生活方式可能导致针对控制到范围的缺省设置对于连续葡萄糖监测系统10的每个用户而言是适当的。具体地,某个PWD11可能要求更厌恶低血糖的系统或者他们期望的葡萄糖范围中的灵活性。调整控制到范围算法的积极性通过允许对每一个PWD11的需要定制控制到范围来改进连续葡萄糖监测系统10的安全性。附加地,还可以在一天中的不同时间或者针对葡萄糖传感器16的生命周期中的不同时段调整控制到范围的积极性。例如,可以在葡萄糖传感器16的使用初期降低积极性,并且然后在已经使葡萄糖传感器16灵敏度稳定时随后提高积极性。如果未取得最近校准血糖测量结果,则也可以降低积极性。如果未取得最近校准血糖测量结果,则CGM读数的准确度较不确定,并且控制到范围的积极性被调整以计及CGM读数准确度中的减小的置信度。如先前所讨论,微控制器32包括:危险分析逻辑40,其基于累积危险值来计算从多个初始葡萄糖状态到目标葡萄糖状态的目标返回路径。图5和6图示了用于计算最终在累积危险值的确定中利用的给定葡萄糖水平的危险值的示例性危险函数80。在一个或多个实施例中,危险函数80由以下等式定义:其中是在x轴上示出的血糖值(mgdl),hg是在y轴上示出的对应危险值,是高血糖转移,是低血糖转移,hMAX是最大危险,hMIN是最小危险,αhyper是高血糖控制积极性,并且α、β和c是过程变量。还可以如遍及本公开通过引用而并入的许多相关申请中概述的那样想到附加和可替换的危险函数。在所说明的实施例中,变量α、β和c被定义如下:α=1.509,β=5.381并且c=1.084。gMAX是高于hMAX的葡萄糖值,高于该葡萄糖值,不计算附加递增危险,并且类似地,gMIN是高于hMIN的葡萄糖值,低于该葡萄糖值,不计算附加递增危险。生成高血糖范围的危险函数(hghyper)和低血糖范围的危险函数(hghypo)的测试情况。hg函数确定hMAX、hMIN、hghyper或hghypo是否应当被实现为所测试的血糖值的最终危险值。hMAX和hMIN的确定中gMAX和gMIN的实现分别防止了极端血糖值的过度正或负的危险值。在一个或多个实施例中,gMAX被设置在600mgdl处,并且hMAX是与gMAX相关联的hghyper。类似地,在一个或多个实施例中,gMIN被设置在10mgdl处,并且hMIN是与gMIN相关联的hghypo。由此,如果超过gMAX或降至gMIN以下,则防止与血糖值相关联的危险值超出由hMAX和hMIN定义的范围。在一个或多个实施例中,利用风险表面的扩缩来调整控制到范围的积极性。具体地,高血糖风险扩缩方法将扩缩因子引入到危险函数中,该扩缩因子仅适用于与高血糖相关联的正危险值。该高血糖风险扩缩方法的实现是利用参数αhyper达成的,该参数αhyper提供了下述功能:调整高血糖危险函数(hghyper)的积极性以计及PwD的变化的胰岛素灵敏度。制定扩缩因子导致风险表面的高血糖部分的积极性的逐步降低和对基础输注率的调整的积极性的伴随而来的逐步降低。在仅扩缩高血糖危险函数时,低血糖危险评估不受影响。然而,在进一步实施例中,扩缩因子还可以被应用于低血糖风险表面,使得低血糖风险和高血糖风险可以被独立地扩缩。参考图4A和4B,分别提供了典型基础输注乘数和在风险扩缩的情况下的基础输注乘数。关于典型基础输注乘数,如图4A中所图示,基础输注率将在大约190mgdl和0mgdlmin处提高到250%。相反,关于高血糖风险扩缩,如图4B中所图示,基础输注率将在大约190mgdl和0mgdlmin处降低到大约165%。在风险扩缩的情况下基础输注乘数从250%到165%的降低中证明了降低的积极性。附加地,参考图4C,连同具有减小的αhyper的危险函数82一起示出了标称危险函数80,危险函数82图示了高血糖区中的危险函数的积极性的逐步降低。在一个或多个实施例中,利用风险表面的转移来调整控制到范围的积极性。具体地,高血糖风险转移方法使高血糖风险表面转移,以计及在用餐或校正丸剂之后的机载(onboard)胰岛素。当针对患者推荐更大葡萄糖目标范围时,也可以使用高血糖风险转移。例如,孩子们典型地使用更大的葡萄糖目标范围。在该情况下,使用最小转移并且添加任何用餐或丸剂相关转移。通过餐食上升或最大允许葡萄糖中的其他转移来转移风险表面的高血糖区。在仅转移高血糖危险函数时,低血糖危险评估不受影响。在上文中呈现的等式1中将高血糖转移的实现说明为参数。参考图5A和5B,分别提供了典型基础输注乘数和在风险转移的情况下的基础输注乘数。关于典型基础输注乘数,如图5A中所图示,基础输注率将在大约190mgdl和0mgdlmin处提高到250%。相反,关于高血糖风险转移,如图5B中所图示,基础输注率将在190mgdl和0mgdlmin处保持在大约100%处基本上不变。在低血糖风险转移的情况下基础输注乘数从250%到100%的降低中证明了降低的积极性。参考图4C,使高血糖区中的危险函数80转移(正危险值),以计及最近用餐或校正丸剂。高转移危险函数84图示了在先前用餐或校正丸剂之后的危险函数中的转移。在一个或多个实施例中,利用所允许的葡萄糖加速度的修改来调整控制到范围的积极性。葡萄糖加速度是葡萄糖速度的改变率。葡萄糖速度是葡萄糖值的改变率。由此,葡萄糖加速度可以具有单位mgdlmin2并且葡萄糖速度可以具有单位mgdlmin。风险表面计算在确定与具体葡萄糖状态相关联的危险时使用用于最大允许葡萄糖加速度的参数。具体地,从当前葡萄糖状态到目标葡萄糖的返回路径的累积危险值利用最大允许葡萄糖加速度。葡萄糖加速度的缺省值是0.025mgdlmin2,并且调整葡萄糖加速度值影响风险表面的形状。最大正葡萄糖加速度和最大负葡萄糖加速度可以是不同绝对值。如果一人具有可用的胰高血糖素,则其最大正加速度可以增大,而其最大负加速度可以保持不变。胰高血糖素的可用性允许过度积极的胰岛素丸剂或基础输注率被校正。从当前葡萄糖状态到目标葡萄糖状态的返回路径的累积危险值是通过下述操作来计算的:对当前葡萄糖状态与目标葡萄糖状态之间的路径上的葡萄糖值的危险值进行求和。该路径是通过限制最大允许葡萄糖加速度来约束的。附加地,目标被假定成具有改变率0,这是由于一旦达到目标葡萄糖状态,就期望保持在目标葡萄糖状态处且不在目标葡萄糖状态以上和以下振荡。葡萄糖状态与目标之间的最小风险的返回路径是最快路径。该返回路径使用最大允许葡萄糖加速度(正和负葡萄糖加速度两者)以返回到目标葡萄糖状态。对返回路径生成的闭合形式解由下述时间段组成:其中,所允许的葡萄糖加速度的一个极值后跟有相反极值。如果正在使用正低血糖转移,则必须将该低血糖转移添加到目标葡萄糖以得到经转移的葡萄糖目标。这是正确地转移低血糖风险所必需的,由于葡萄糖目标表示血糖水平,其中危险从正(高血糖)转移到负(低血糖)。目标葡萄糖到经转移的葡萄糖目标的调整由以下等式定义:其中是经转移的葡萄糖目标,gt是标称葡萄糖目标,并且是低血糖转移。等式4中的最大函数防止了负低血糖转移被添加到目标葡萄糖,且代之以使用低血糖转移0,导致和gt相等。首先,必须确定返回路径的广义形式。返回路径可以具有初始正葡萄糖加速度后跟有负葡萄糖加速度,或者可以具有初始负葡萄糖加速度后跟有正葡萄糖加速度。返回路径的广义形式可以是通过求解下文中呈现的等式5和等式6中的哪一个返回实数解来确定的。其中是葡萄糖水平的改变率,是最大正葡萄糖加速度,是最大负葡萄糖加速度,并且是来自等式4的经转移的葡萄糖目标。如果等式5返回的实数并且和两者均大于或等于0,则返回路径首先利用正加速度且其次利用负加速度。相反,如果等式6返回的实数并且和两者均大于或等于0,则返回路径首先利用负加速度且其次利用正加速度。一旦确定返回路径的广义形式,就可以计算返回路径的累积危险值。当返回路径首先利用正加速度时,累积危险值由以下等式定义:并且当返回路径首先利用负加速度时,累积危险值由以下等式定义:。应当领会,遇到更极端葡萄糖值的返回路径将往往具有更高累积危险值,这是由于每一个时间点的危险值更高,如图4C中所图示。例如,在相同葡萄糖改变率处,血糖值225mgdl将比血糖值120mgdl具有更高危险值。而且,耗费更长时间返回到目标葡萄糖状态的路径将往往具有更高危险值。由于初始葡萄糖改变率或极端葡萄糖值,路径可能要求更长时间返回到目标葡萄糖状态。在一个或多个实施例中,所允许的加速度增大。增大所允许的加速度导致葡萄糖浓度中的更大改变率的风险降低,这是因为CGM系统10假定更容易利用更高允许最大加速度从不期望葡萄糖状态恢复。利用增大的最大允许加速度调整控制到范围系统使控制到范围系统等待更长时间,以当血糖下降时降低基础胰岛素输注率,这从而提高了积极性。参考图6A和6B,在葡萄糖浓度中的改变率(葡萄糖速度)为0时的基础输注率在缺省设置与控制到范围系统之间几乎相同,其中来自增大的最大允许加速度的提高的积极性得以实现。基础输注乘数相对于葡萄糖浓度改变率的所得负斜率减小。在一个或多个实施例中,减小所允许的加速度。减小所允许的加速度导致CGM系统10计算出葡萄糖浓度中的提高的改变率的更大风险。从0偏离的血糖浓度的改变率中的增大的所计算的风险使CGM系统10对葡萄糖中的任何下降或上升快速反应。CGM系统10积极地管理从葡萄糖浓度中的零改变率的任何偏离。参考图7A和7B,在葡萄糖浓度中的改变率(葡萄糖速度)为0时的基础输注率在缺省设置与控制到范围系统之间几乎相同,其中来自增大的最大允许加速度的提高的积极性得以实现。基础输注乘数相对于葡萄糖浓度改变率的所得负斜率增大。一个或多个实施例中,通过对一定范围的葡萄糖状态的危险乘以该状态的概率之积进行求和来确定风险。葡萄糖状态不确定性控制给定状态的概率的计算。如前所讨论,不确定性典型地由卡尔曼滤波器产生。如果不确定性在扩展时间段内保持为高或者越过具体阈值,则通知PWD11并且可以将控制算法从控制到范围改变到预测性低葡萄糖暂停(pLGS)。如果不确定性越过更极端的阈值,则可以关闭控制系统,直到CGM系统10的葡萄糖传感器16被重新校准或替代。累积危险值提供了从当前葡萄糖状态到目标葡萄糖状态的具体返回路径的危险。然而,在来自葡萄糖传感器16的CGM血糖测量结果中存在不确定性。由此,真实血糖测量结果可能与由葡萄糖传感器16确定的血糖不同,并且具体的所计算的累积危险值可能关于实际返回路径不准确。为了计及真实返回路径中的可变性,确定计及CGM血糖测量结果中的差异的当前风险度量。为了计算当前风险度量,最初确定CTR时段的中间点处的所预测的葡萄糖状态。在各种实施例中,CTR时段的中间点是真实中点(CTR时段的12)、CTR时段的14、CTR时段的13、CTR时段的23或CTR时段的34。在实施例中,典型地每15分钟更新CTR,从而导致中点是15分钟采样间隔中的7.5分钟。对于短期行为,线性预测与更复杂模型表现得一样好或者比更复杂模型表现得更好,因此,为了简单起见而使用线性预测。葡萄糖水平中的改变率被假定成在15分钟采样间隔的中点处确定所预测的血糖水平时在7.5分钟窗口内保持恒定。由此,所预测的葡萄糖水平由以下等式定义:其中是初始的所测量的血糖水平,是葡萄糖水平的初始改变率,并且τ是从CTR时段的开始处测量的预测时间。因此,所预测的葡萄糖状态是。随后,确定所预测的葡萄糖状态周围的葡萄糖状态分布。类似地,还可以确定当前葡萄糖状态周围的葡萄糖状态分布。基于和方向上的分布的标准差来选择葡萄糖状态分布的样本。葡萄糖状态分布样本的生成由以下等式定义:其中是葡萄糖值的分布,是葡萄糖改变率的分布,是当前风险度量的葡萄糖值,是当前风险度量的葡萄糖水平的改变率,是的标准差,是的标准差,k是的除法的数目,并且n是的除法的数目。应当领会,如果葡萄糖状态分布对于当前葡萄糖状态或所预测的葡萄糖状态而言是期望的,则可以分别表示当前葡萄糖水平或所预测的葡萄糖水平。等式14和等式15提供了在和的两个标准差的范围内变动的样本的分布。在至少一个实施例中,通过将由两个标准差界定的范围除以10来选择的采样值,并且通过将由两个标准差界定的范围除以8来选择的采样值,分别使得k=10以及n=8。当前风险度量是基于从经采样的葡萄糖状态中的每一个生成的返回路径的累积危险值的加权平均来确定的。具体地,风险是通过下述操作来计算的:确定和中的点的每一个组合处的累积危险值的加权平均;以及通过多变量指数函数对它们进行加权。当前风险度量由以下等式定义:其中r是当前风险度量,是葡萄糖值的分布,并且是从所检测到的葡萄糖值周围的葡萄糖状态分布确定的葡萄糖改变率的分布,是每一个葡萄糖状态处的返回路径的累积危险值,是当前风险度量的葡萄糖值,是当前风险度量的葡萄糖水平的改变率,是的标准差并且是的标准差。累积危险值的加权导致与所测量的葡萄糖状态最接近的样本接收到最终当前风险度量计算中的最大权重。在一个或多个实施例中,增加了葡萄糖状态中的不确定性。增加不确定性导致低血糖概率中的升高。附加地,由于危险函数是非对称的,因此升高的低血糖概率导致低血糖风险中的升高。低血糖风险中的升高导致控制到范围系统对血糖的改变率(葡萄糖速度)中的增加反应得更快,且还降低了高血糖区中的基础输注升高的积极性。参考图8A和8B,分别提供了典型不确定性和增加不确定性的基础输注乘数。关于典型不确定性,如图8A中所图示,基础输注率将在大约190mgdl和0mgdlmin处提高到250%。相反,关于增加不确定性,如图8B中所图示,基础输注率将在大约190mgdl和0mgdlmin处提高到大约210%。在葡萄糖状态的不确定性中增加的情况下基础输注乘数从250%到210%的降低中证明了降低的积极性。在进一步实施例中,减少葡萄糖状态中的不确定性。减少不确定性使控制到范围系统增加其对葡萄糖状态的信任。对葡萄糖状态的信任中的增加导致控制到范围系统对血糖的改变率(葡萄糖速度)中的升高反应得更缓慢,且还提高了高血糖区中的基础输注升高的积极性。控制到范围系统可能对血糖的改变率中的升高反应得更缓慢,这是因为实际上处于低血糖中的概率随葡萄糖状态中的减少的不确定性而降低。参考图9A和9B,分别提供了典型不确定性和减少不确定性的基础输注乘数。其中不请求对基础输注率的调整的区随葡萄糖状态中的减少的不确定性而增大,如图9A和9B的比较中所示。积极性参数中的每一个可以由PWD11手动地调整或者通过控制到范围算法基于其他因素(诸如锻炼、压力、睡眠、旅行、年龄和或疾病)而调整。葡萄糖不确定性和或加速度参数可以被用在算法中以确定风险表面和或基础输注乘数简档,但不暴露于PWD11或用户。例如,可以向PWD11或用户给出低、中或高积极性的选择,该选择调整最大允许葡萄糖加速度、高血糖风险转移、低血糖风险转移和风险扩缩,以实现期望结果。可以在不对PWD11或HCP报警用于4个积极性参数的特定值的情况下实现低、中或高积极性的抽象设置。应当领会,还可以实现附加水平的积极性,诸如中-低和中-高或者表示10个有区别积极性层的1-10的标度。在进一步实施例中,HCP和PWD11可以定义使用高血糖转移参数而设置的具体范围以及使用扩缩因子和加速度而设置的积极性。当首先规定CGM系统10且然后随时间优化CGM系统10时,可以设置确定CGM系统10的积极性的参数。在一些实施例中,积极性设置可以是中等的,作为缺省设置,具有到较积极的高设置或较不积极的低设置的调整。在调整和或确定积极性设置时,HCP和或PWD11可以依靠PWD11对负和正葡萄糖速度两者的灵敏度。一些人在他们的血糖仍然处于良好范围时因快速负葡萄糖速度而痛苦的程度与他们因经历低血糖而痛苦的程度一样多。附加地,HCP可以利用问卷调查以测算PWD11对低血糖的恐惧、PWD11的关于低血糖时间的了解的程度、以及最近严重低血糖发作期的数目,作为用于选择低、中或高的积极性设置的向导。每一个CTR时段的最终基础输注乘数是利用当前风险度量来确定的。当前风险度量首先被转换成0与TBRMAX之间的基础输注乘数值。TBRMAX是临时基础输注率(TBR)的最大百分比。在至少一个实施例中,TBRMAX缺省为250%。在进一步实施例中,TBRMAX低于或高于250%,且被调整以调谐针对低血糖不利个体的控制和确定。基础输注乘数值由以下等式定义:其中BMr是基础输注乘数值,r是当前风险度量,并且r0%是参考风险度量。在一个或多个实施例中,参考风险度量是与完整基础输注关闭相联系的葡萄糖状态。例如,完整基础输注关闭可能在70mgdl处发生,使得当血糖水平处于70mgdl以下时,不提供基础输注胰岛素。基础输注乘数值可以是随着当前风险度量变化而作为连续函数提供的。然而,在将经调整的基础输注率提供给疗法递送设备31之前,经调整的基础输注率被转换成最接近的TBR递增量(TBRinc),以提供递增基础输注率乘数(BMinc)。递增基础输注率乘数由以下等式定义:参考图9,图示了示例性连续基础输注乘数值以及具有10%的TBRinc和所实现的下取整函数的递增基础输注率乘数。应当领会,针对胰岛素递送系统采用自动控制策略的障碍已经是来自(一个或多个)连续葡萄糖传感器的输入数据(即,葡萄糖值)中的不确定性。已经在改进准确度和可靠性时作出极大努力。例如,甚至在使用阻抗数据以调整来自葡萄糖传感器的数据以便改进所报告的值的准确度的情况下,大概不太可能实现100%的可靠性。出于该原因,增益控制模块可以评估传感器数据的质量,并计及控制算法中的质量。具体地,发明人已经发现,从传感器数据的时间过程导出且用于适配统计滤波器的增益的概率分数可以改进所报告的值的质量。传感器质量分数Qtotal还可以用于适配胰岛素递送系统的控制器增益,使得可以基于传感器葡萄糖结果中的置信度来针对用户的安全性而折衷控制的积极性。控制器的积极性可以是使用传感器质量分数来调整的。在比例积分微分控制器(PID)控制的情况下,利用三个增益项指定控制器。传感器质量分数可以用于调整某组增益项。附加地,可以在计算积分项时使用传感器质量分数,使得在传感器质量低时出现的过去误差对当前控制器输出有更小影响。还可以使用高转移、高扩缩、最大允许葡萄糖加速度或葡萄糖状态不确定性来调整控制器的积极性。高转移可以在Qtotal是1时为0,且随着它朝着0减小而增大。高扩缩可以等于Qtotal或它的因子。通过将Qtotal值并入到递归滤波器中来调整葡萄糖状态不确定性。就来自质量度量集合的总质量分数Qtotal而言(例如,就从葡萄糖传感器16和或阻抗传感器接收到的数据和(一个或多个)信号输入特性而言)评定所评估的数据质量。总质量分数Qtotal具有在从零(0)到(一)1的范围内变动的值,且用于更改微控制器32的增益,以当质量分数低时提供提高的安全性水平,且当质量分数高时改进微控制器性能和血糖控制。例如,在一个所说明的实现方式中,在具有总质量分数Qtotal=0(或者0≤Qtotal<T)的传感器16的情况下,微控制器32如果在闭环葡萄糖控制中操作的话将回退到更安全的开环操作模式(即,开环葡萄糖控制),在该闭环葡萄糖控制中,胰岛素递送调整由微控制器32基于从葡萄糖传感器16接收到的输入来自动作出,在该开环操作模式中,调整由用户作出且如预编程时间简档推荐给用户那样作出。在总质量分数Qtotal大于阈值T和或等于一(1)(即,T<Qtotal≤1)的情况下,微控制器32更积极地行动以在传感器数据将使系统能够递送适当量的胰岛素的确定性下管理血糖,从而允许例如系统10以最优安全性在最优闭环葡萄糖控制中起作用。在另一实现方式中,在总质量分数Qtotal大于阈值Thigh和或等于一(1)(即,Thigh<Qtotal≤1)的情况下,微控制器32积极地行动以在传感器数据将使系统能够递送适当量的胰岛素的确定性下管理血糖,从而允许例如系统10以最优安全性在最优闭环葡萄糖控制中起作用。在具有总质量分数Qtotal使得Tlow≤Qtotal<Thigh(其中Tlow<Thigh)的葡萄糖传感器16的情况下,微控制器32将回退到更安全的降低增益闭环操作模式,其中调整由微控制器自动地但通过等式21-25的实现、基于总质量分数的值、利用降低增益来作出。在具有总质量分数Qtotal使得0≤Qtotal<Tlow的传感器16的情况下,微控制器将回退到更安全的开环操作模式(即,开环葡萄糖控制),其中调整由用户作出,且如预编程时间简档推荐给用户那样以及如预编程时间简档推荐给用户那样作出。对于基于概率的控制器增益和Qtotal的进一步和可替换描述,参见于2016年3月4日提交的、名称为“ProbabilityBasedControllerGain”的、序列号为15061,202的美国专利申请,其全部公开内容通过引用并入本文。对于确定基础输注率调整的进一步和可替换描述,参见于2015年3月28日提交的、名称为“SystemandMethodforAdjustingTherapyBasedonRiskAssociatedwithaGlucoseState”的、序列号为14229,016的美国专利申请,其全部公开内容通过引用并入本文。对于计算目标返回路径和计算风险度量的进一步描述,参见于2012年10月4日提交的、名称为“SystemandMethodforAssessingRiskAssociatedwithaGlucoseState”的、序列号为13645,198的美国专利申请,其全部公开内容通过引用并入本文。对于概率分析工具、递归滤波器、不确定性计算、以及计算设备66的其他概率和风险分析功能的进一步描述,参见于2010年1月26日提交的、名称为“MethodsandSystemsforProcessingGlucoseDataMeasuredfromaPersonHavingDiabetes”的、序列号为12693,701的美国专利申请和于2010年6月18日提交的、名称为“InsulinOptimizationSystemsandTestingMethodswithAdjustedExitCriterionAccountingforSystemNoiseAssociatedwithBiomarkers”的、序列号为12818,795的美国专利申请,其全部公开内容通过引用并入本文。对于丸剂计算器模块88的进一步描述,参见于2012年8月24日提交的、名称为“HandheldDiabetesManagementDevicewithBolusCalculator”的、序列号为13593,557的美国专利申请和于2012年8月24日提交的、名称为“InsulinPumpandMethodsforOperatingtheInsulinPump”的、序列号为13593,575的美国专利申请,其全部公开内容通过引用并入本文。现在应当理解,本文描述的方法和系统可以用于估计患有糖尿病的人的葡萄糖水平并利用控制到范围算法以调整患有糖尿病的人的葡萄糖水平。此外,本文描述的方法和系统还可以用于调谐控制到范围算法的积极性以可靠地提高胰岛素基础输注率以便计及葡萄糖浓度中的升高。本文描述的方法可以存储在具有用于执行该方法的计算机可执行指令的计算机可读介质上。这种计算机可读介质可以包括致密盘、硬盘驱动器、拇指驱动器、随机存取存储器、动态随机存取存储器、闪速存储器等等。应当注意,与预期使用的记载形成对照,本文对本公开的以特定方式“被配置”、“被配置”成体现特定性质或以特定方式起作用的部件的记载是结构记载。更具体地,本文对部件“被配置”的方式的引用标示该部件的现有物理状况,且由此应被理解为对该部件的结构特性的明确记载。尽管本文已经说明和描述了本发明的特定实施例和方面,但在不脱离本发明的精神和范围的情况下可以作出各种其他改变和修改。此外,尽管本文已经描述了各种发明方面,但这种方面不必组合利用。因此,意图在于,所附权利要求覆盖处于本发明的范围内的所有这种改变和修改。

权利要求:1.一种在患有糖尿病的人的连续葡萄糖监测系统中确定胰岛素的基础输注率调整的方法,所述方法包括:由至少一个计算设备接收表示至少一个葡萄糖测量结果的信号;由所述至少一个计算设备基于所述信号来检测所述人的葡萄糖状态,所检测到的葡萄糖状态包括所述人的葡萄糖水平和所述葡萄糖水平的改变率;由所述至少一个计算设备确定当前风险度量,所述当前风险度量指示所述人的低血糖状况和高血糖状况中的至少一个的风险;以及由所述至少一个计算设备基于所述当前风险度量和包括至少一个积极性参数的控制到范围算法来计算对疗法递送设备的基础输注率的调整。2.如权利要求1所述的方法,其中确定当前风险度量包括:由所述至少一个计算设备基于从所检测到的葡萄糖状态到目标葡萄糖状态的转移来确定返回路径,所述返回路径包括与到所述目标葡萄糖状态的返回相关联的至少一个中间葡萄糖值;由所述至少一个计算设备确定所述返回路径的累积危险值,所述累积危险值包括所述返回路径上的所述至少一个葡萄糖值的危险值之和,每一个危险值指示与对应中间葡萄糖值相关联的危险;以及由所述至少一个计算设备确定从所检测到的葡萄糖状态周围的葡萄糖状态分布生成的返回路径的累积危险值的加权平均。3.如权利要求1所述的方法,进一步包括:在图形用户界面上向用户显示表示所计算的对所述基础输注率的调整的图形数据。4.如权利要求1所述的方法,进一步包括:发射控制信号,所述控制信号指示所述疗法递送设备基于所计算的调整来调整所述基础输注率。5.如权利要求4所述的方法,其中所述疗法递送设备包括用于将胰岛素递送到所述患有糖尿病的人的胰岛素泵,并且所述疗法递送设备与所述至少一个计算设备通信以用于接收所计算的对所述基础输注率的调整。6.如权利要求2所述的方法,其中所述返回路径上的所述至少一个葡萄糖值的危险值中的每一个的危险值由所述至少一个计算设备根据下式确定:,,以及其中是葡萄糖值,是高血糖转移,是低血糖转移,hMAX是最大危险,gMAX是高于hMAX的葡萄糖值,高于该葡萄糖值,不计算附加递增危险,hMIN是最小危险,gMIN是高于hMIN的葡萄糖值,低于该葡萄糖值,不计算附加递增危险,αhyper是高血糖控制积极性,并且α、β和c是过程变量。7.如权利要求2所述的方法,进一步包括:基于所述当前风险度量来生成基础输注乘数曲线。8.如权利要求2所述的方法,其中所述积极性参数是利用扩缩因子对基于所述风险度量而生成的风险表面的扩缩。9.如权利要求3所述的方法,其中如果是实数,则所述返回路径的累积危险值由所述至少一个计算设备根据下式确定:其中,,是所述葡萄糖水平的改变率,是最大正葡萄糖加速度,并且是最大负葡萄糖加速度,或者如果是实数,则所述返回路径的累积危险值由所述至少一个计算设备根据下式确定:其中,,是所述葡萄糖水平的改变率,是最大正葡萄糖加速度,并且是最大负葡萄糖加速度。10.如权利要求2所述的方法,其中所述积极性参数是风险表面的转移。11.如权利要求10所述的方法,其中仅表示高血糖风险的风险表面被转移。12.如权利要求11所述的方法,其中高血糖风险表面中的转移校正用餐或校正丸剂之后的机载胰岛素。13.如权利要求2所述的方法,其中所述积极性参数是对最大允许葡萄糖加速度的调整。14.如权利要求13所述的方法,其中所述最大允许葡萄糖加速度增大。15.如权利要求13所述的方法,其中所述最大允许葡萄糖加速度减小。16.如权利要求2所述的方法,其中所述积极性参数是对葡萄糖状态不确定性的调整。17.如权利要求16所述的方法,其中所述葡萄糖状态不确定性由卡尔曼滤波器产生。18.如权利要求2所述的方法,其中所述葡萄糖状态分布由所述至少一个计算设备根据下式确定:以及其中是葡萄糖值的分布,是葡萄糖改变率的分布,是当前风险度量的葡萄糖值,是当前风险度量的葡萄糖水平的改变率,是的标准差,是的标准差,k是的除法的数目,并且n是的除法的数目。19.如权利要求2所述的方法,其中所述当前风险度量由所述至少一个计算设备根据下式确定:其中r是所述当前风险度量,,是葡萄糖值的分布,并且是从所检测到的葡萄糖状态周围的葡萄糖状态分布确定的葡萄糖改变率的分布,是每一个葡萄糖状态处的所述返回路径的累积危险值,是所述当前风险度量的葡萄糖值,是所述当前风险度量的葡萄糖水平的改变率,,是的标准差,并且是的标准差。20.一种被配置成在患有糖尿病的人的连续葡萄糖监测系统中确定基础输注率调整的血糖管理设备,所述设备包括:存储可执行指令的非瞬变计算机可读介质;以及至少一个处理设备,被配置成执行所述可执行指令,使得在由所述至少一个处理设备执行时,所述可执行指令使所述至少一个处理设备:接收表示至少一个葡萄糖测量结果的信号;基于所述信号来检测所述人的葡萄糖状态,所检测到的葡萄糖状态包括所述人的葡萄糖水平和所述葡萄糖水平的改变率;确定当前风险度量,所述当前风险度量指示人的低血糖状况和高血糖状况中的至少一个的风险;以及基于所述当前风险度量和包括至少一个积极性参数的控制到范围算法,来计算对疗法递送的基础输注率的调整。21.如权利要求19所述的设备,其中确定当前风险度量包括:由所述至少一个计算设备基于从所检测到的葡萄糖状态到目标葡萄糖状态的转移来确定返回路径,所述返回路径包括与到所述目标葡萄糖状态的返回相关联的至少一个中间葡萄糖值;由所述至少一个计算设备确定所述返回路径的累积危险值,所述累积危险值包括所述返回路径上的所述至少一个葡萄糖值的危险值之和,每一个危险值指示与对应中间葡萄糖值相关联的危险;以及由所述至少一个计算设备确定从所检测到的葡萄糖状态周围的葡萄糖状态分布生成的返回路径的累积危险值的加权平均。

百度查询: 豪夫迈·罗氏有限公司 控制到范围积极性

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。