Document
拖动滑块完成拼图
首页 专利交易 科技果 科技人才 科技服务 国际服务 商标交易 会员权益 IP管家助手 需求市场 关于龙图腾
 /  免费注册
到顶部 到底部
清空 搜索

一种基于UWB雷达的人员即将跌倒检测方法及装置 

买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!

申请/专利权人:安徽建筑大学

摘要:本发明涉及即将跌倒检测方法及装置技术领域,具体公开了一种基于UWB雷达的人员即将跌倒检测方法及装置,方法包括:数据采集:实时采集待监测室区域内检测时间段内待检测人员发生相关动作的连续二维CSI信号;数据预处理:对二维CSI信号进行降噪处理,获取二维CSI序列片段并进行分类标注;分类标注的二维CSI序列片段划分为三种类型;通过预设深度学习检测模型将步骤二中的near‑fall、fall和ADLs二维CSI序列片段经过滑动窗口的划分可以得到若干个CSI信号矩阵,进而完成输入数据构造;动作检测分类:构建深度神经网络模型将预处理后的二维CSI矩阵进行灰度化处理并作为深度神经网络的输入,完成数据的特征提取和对不同动作类型进行分类。

主权项:1.一种基于UWB雷达的人员即将跌倒检测方法,其特征在于,所述方法包括:步骤一、数据采集:实时采集待监测室区域内检测时间段内待检测人员发生相关动作的连续二维CSI信号;步骤二、数据预处理:对二维CSI信号进行降噪处理,获取二维CSI序列片段并进行分类标注;所述分类标注的二维CSI序列片段划分为三种类型,分别是:near-fall、fall和ADLs二维CSI序列片段;步骤三、通过预设深度学习检测模型将步骤二中的near-fall、fall和ADLs二维CSI序列片段经过滑动窗口的划分可以得到若干个CSI信号矩阵,进而完成输入数据构造;步骤四、动作检测分类:构建深度神经网络模型将预处理后的二维CSI矩阵进行灰度化处理并作为深度神经网络的输入,完成数据的特征提取和对不同动作类型进行分类;所述步骤二中二维CSI信号的降噪处理过程为:选择一个静态物体的反射信号作为参考,选择幅度最大的脉冲;对于第k帧,通过设置降噪算法计算得到相位差完成降噪处理:输入:第k帧的静止物体反射信号;跌倒过程中的第k帧信号,;输出:相位差,c;对所述near-fall、fall和ADLs二维CSI序列片段进行定义:fall:指当个体正在经历一个不受控制的过渡阶段,向着不希望、潜在灾难性的状态转变的时间间隔,即为跌倒;near-fall:指的是个体正在经历一个不受控制的过渡阶段,向着跌倒状态转变的时间间隔,即为即将跌倒;ADLS:指的是个体处于控制下且处于受控制状态的所有时间间隔;所述ADLs在本实验中包括站立、行走、躺下等动作,且根据所述near-fall、fall和ADLs二维CSI序列片段的定义,将连续序列划分成这三种类型的二维序列片段;所述步骤三中滑动窗口划分二维CSI数据的方法为:S1、将基于接收到的I和Q离散基带信号,计算得到CSI相位;S2、将UWB全通道划分为96个子通道,滑动窗口可以将其划分为一个具有96M行的二维矩阵,其中M是滑动窗口的大小;滑动窗口划分的二维CSI相位矩阵可表示为;其中表示第k帧中第l频段的相位值,通过设置滑动窗口大小和步长,将相位矩阵分割为多个子矩阵,且每个子矩阵成为深度神经网络的输入;所述步骤四中深度神经网络由CNN、LSTM、FCN三部分组成;通过将预处理后二维CSI矩阵当作灰度图处理,并作为深度神经网络的输入,CNN与LSTM完成数据的特征提取,利用FCN完成分类;所述CNN、LSTM、FCN三部分深度神经网络完成三种动作类型的分类过程为:SS1、将相位矩阵类比灰度图作为CNN的输入,通过设置两层CNN结构;且每层CNN均包含大小为9×9卷积核的卷积层、批归一化、包含激活函数Relu的激活层;且第二层CNN还包括3×3最大值池化层;SS2、将经过CNN后输出的三维幅值数据进行扁平化处理,将三维输出变成一维向量,输入两个LSTM单元叠加结构的神经网络的门机制中对信息进行筛选与整合,实现较长期序列信息记忆功能;其中,所述门机制包括:遗忘门、输入门、输出门,共3种;SS3、在LSTM输出连接到全连接神经网络上,通过使用ReLU函数进行激活,使用SoftMax函数完成对即将跌倒事件和其他事件的分类,进而识别出三种不同类型事件,实现跌倒的预测。

全文数据:

权利要求:

百度查询: 安徽建筑大学 一种基于UWB雷达的人员即将跌倒检测方法及装置

免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。