买专利卖专利找龙图腾,真高效! 查专利查商标用IPTOP,全免费!专利年费监控用IP管家,真方便!
申请/专利权人:山东省计算中心(国家超级计算济南中心)
摘要:本发明提出一种基于高效微调和联邦学习的行业大模型训练方法及系统,涉及联邦学习领域。该方法由中心端执行,包括:获取原始全局模型,初始化可调低秩矩阵;所述可调低秩矩阵用于根据客户端资源量进行秩缩放;将模型结构和可调低秩矩阵发送给各客户端,以使各客户端基于本地数据对可调低秩矩阵进行微调训练,得到更新的可调低秩矩阵,并发送至中心端;将更新的可调低秩矩阵进行聚合,更新原始全局模型的权重文件,得到优化的全局模型。本发明客户端在微调训练时对预训练权重进行量化,并对具有秩缩放功能的可调低秩矩阵进行微调训练,以提取客户端本地数据有效特征,实现了模型参数的灵活调整与资源的高效利用。
主权项:1.一种基于高效微调和联邦学习的行业大模型训练方法,其特征在于,由中心端执行,包括:获取原始全局模型,初始化可调低秩矩阵;所述可调低秩矩阵用于根据客户端资源量进行秩缩放;将模型结构和可调低秩矩阵发送给各客户端,以使各客户端基于本地数据对可调低秩矩阵进行微调训练,得到更新的可调低秩矩阵,并发送至中心端;将更新的可调低秩矩阵进行聚合,更新原始全局模型的权重文件,得到优化的全局模型。
全文数据:
权利要求:
百度查询: 山东省计算中心(国家超级计算济南中心) 基于高效微调和联邦学习的行业大模型训练方法及系统
免责声明
1、本报告根据公开、合法渠道获得相关数据和信息,力求客观、公正,但并不保证数据的最终完整性和准确性。
2、报告中的分析和结论仅反映本公司于发布本报告当日的职业理解,仅供参考使用,不能作为本公司承担任何法律责任的依据或者凭证。